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Analyse de Fourier

I. Décomposition d’un signal périodique en série de
Fourier

I.1. Théorème de Fourier
Soit s : t → s(t) une fonction réelle T -périodique. On pose ω = 2π

T = 2πf .
Sous des conditions mathématiques peu restrictives (cf programme de 2è année),
on peut alors écrire s(t) sous la forme d’un développement en série de Fourier
(DSF)

s(t) = a0 +
+∞∑
n=1

[an cos(nωt) + bn sin(nωt)]

où la valeur moyenne du signal s(t) est représentée par le coefficient

a0 = 1
T

ˆ T

0
s(t)dt =< s(t) >T

et an et bn sont les coefficients des harmoniques de rang n, donnés par 1

an = 2
T

ˆ T

0
s(t) cos(nωt)dt et bn = 2

T

ˆ T

0
s(t) sin(nωt)dt .

L’harmonique de rang n = 1 est appelée le (mode) fondamental.
En bref : une fonction s de période T peut s’écrire comme une somme finie ou
infinie de fonctions sinusoïdales plus une constante.

I.2. Autres écritures de la décomposition en série de Fourier

s(t) = a0 +
+∞∑
n=1

An cos(nωt+ ϕn) avec An =
√
a2
n + b2

n , et tanϕn = − bn
an

s(t) =
+∞∑

n=−∞
Cn einωt avec Cn = 1

T

ˆ T

0
s(t) e−inωtdt = 1

2(an − ibn)

1. Ces relations ne sont pas à connaître cette année.

I.3. Propriétés
• Les intégrales précédentes peuvent être calculées sur un intervalle [t0, t0 +T ]
avec t0 quelconque.

• Si la fonction s est paire : bn = 0 .

• Si la fonction s est impaire : a0 = 0 et an = 0 .

• Le spectre de la fonction s est le diagramme
donnant l’amplitude des différentes harmo-
niques An en fonction de la pulsation nω (ou
fréquence nf avec ω = 2πf).
Le spectre permet donc de visualiser l’impor-
tance relative des différentes harmoniques.
Remarque : on montre facilement que néces-
sairement An −−−−→

n→∞
0 si la fonction est déve-

loppable en série de Fourier. ωn

An

ω 2ω 3ω 4ω 5ω 6ω0

I.4. Exemples

• Un signal triangle symétrique impair 2, de pulsation ω et d’amplitude E0 a
pour DSF :

ue(t) = 8E0

π2

∞∑
n=0

(−1)n sin[(2n+ 1)ωt]
(2n+ 1)2

• Un signal créneau symétrique impair 3, de pulsation ω et d’amplitude E0 a
pour DSF :

ue(t) = 4E0

π

∞∑
n=0

sin[(2n+ 1)ωt]
2n+ 1

I.5. Energie et valeur efficace
L’énergie portée par le signal s(t) (ou sa puissance...) est en général une gran-

deur qui en dépend quadratiquement : E(t) = K s2(t) où K est une constante.

2. La forme paire s’obtient en remplaçant t par t±T/4, ce qui remplace (−1)n

(2n+1)2 sin . . . par
∓1

(2n+1)2 cos . . . .
3. De même on obtient la forme paire en translatant : t → t ± T/4, ce qui remplace

1
2n+1 sin . . . par ∓(−1)n

2n+1 cos . . . .

1



PCSI 1 - Stanislas - Complément de Cours - Analyse de Fourier A. MARTIN

En régime périodique on s’intéresse souvent à l’énergie moyenne sur une période
< E >T , qui est associée à la valeur efficace Seff de s(t) par

< E >= 1
T

ˆ T

0
K s2(t) dt = K S2

eff avec Seff =

√
1
T

ˆ T

0
s2(t) dt .

Nous avons montré au début de l’année les moyennes quadratiques de deux
signaux asynchrones s’additionnent lorsqu’on fait la somme des signaux 4 :

< (s1 + s2)2 >=< s2
1 > + < s2

2 >

On en déduit le théorème suivant 5 très intuitif :

Théorème : Le carré de la valeur efficace de s(t) est la somme des carrés des
valeurs efficaces de ses composantes spectrales (valeur moyenne, fonda-
mental et harmoniques).

S2
eff = a2

0 +
∞∑
n=1

A2
n

2

Point-de-vue énergétique : l’énergie moyenne est la somme des
énergies moyennes de toutes les composantes spectrales.

I.6. Cas particulier important : produit de deux fonctions pé-
riodiques

a. Signaux sinusoïdaux

Le produit de deux fonctions sinusoïdales peut être ré-écrit comme une somme
de fonctions sinusoïdales (on suppose ω1 > ω2) :

cos(ω1t+ ϕ1). cos(ω2t+ ϕ2) = 1
2 cos ((ω1 − ω2)t+ ϕ1 − ϕ2) +
1
2 cos ((ω1 + ω2)t+ ϕ1 + ϕ2)

En toute rigueur, cette fonction n’est a priori pas périodique, sauf si ω1
ω2

est un
nombre rationnel. Toutefois cette restriction est peu contraignante en physique
car toute mesure s’exprime par un nombre décimal. En pratique donc le rapport
de deux pulsations (ou périodes) sera toujours rationnel : T2

T1
= p

q . Et on pourra

4. Deux signaux asynchrones n’interfèrent pas.
5. Théorème de Parceval. Les conditions de validité sont la plupart du temps vérifiées en

physique (sommabilité de la série Σa2
n).

toujours identifier une période T dans le signal, définie par : T = pT1 = qT2. On
peut donc tout de même interpréter la décomposition ci-dessus comme un DSF,
ou un spectre de raie :

Le produit de deux fonctions sinusoïdales de pulsations ω1 et ω2 comprend deux
composantes spectrales de pulsations |ω1 − ω2| et ω1 + ω2.

b. Signaux périodiques

Généralisons à deux fonctions périodiques s1 et s2 respectivement de périodes
T1 et T2 (T2 > T1). Le produit s1.s2 n’est a priori pas périodique si T1 6= T2, sauf
si T1

T2
est un nombre rationnel... même remarque. On peut donc obtenir le spectre

de s1.s2 simplement en multipliant les DSF terme à terme, ce qui est rigoureux
mathématiquement lorsque l’une des fonctions a un DSF avec un nombre fini de
terme. Toutefois, en physique expérimentale la limite en précision des appareils
de mesure conduit naturellement à tronquer les DSF et ne retenir qu’un nombre
fini d’harmoniques. D’après la propriété ci-dessus, on obtiendra donc un spectre
de raies :
Le produit de deux fonctions périodiques de périodes T1 et T2 a un spectre com-
prenant l’ensemble des composantes de fréquences construites par combinaisons
linéaires entières de f1 et f2 (restreintes aux valeurs positives) :

{ |nf1 +mf2| } avec (n,m) ∈ Z2

c. Exemples

• cos2(ωt) = 1
2 (1 + cos(2ωt)) est un signal T2 -périodique comprenant une com-

posante continue et une seule harmonique, le fondamental (de pulsation 2ω).
• cosn(ωt) a un spectre comprenant l’ensemble des composantes de fré-

quences : {0, f, 2f, . . . , nf}. C’est biensûr aussi le cas de sinn(ωt) et cosk(ωt)∗
sinn−k(ωt)

d. Non-linéarité d’un système - distorsion

Par simplicité, considérons un système qui répond à un signal d’entrée e(t) par
un signal de sortie s(t) via une relation non différentielle (une équation différen-
tielle d’ordre 0). Si le système est linéaire, on a donc deux constantes a et b telles
que

s(t) = a+ b e(t) .
Dans de nombreux contextes, le système qu’on souhaite linéaire ne l’est cependant
pas parfaitement. Par exemple ceci arrive souvent lorsqu’on augmente l’amplitude
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des signaux utilisés (existence de saturations, approximation linéaire non valable
dans un développement limité...). Il arrive aussi que cette non-linéarité soit une
propriété que l’on recherche. On a alors une réponse qui s’écrit plutôt :

s(t) = a+ b e(t) + c e2(t) + d e3(t) + . . .

D’après les exemples précédents, on comprend que si l’entrée e(t) est sinusoïdale
de pulsation ω, alors la sortie ne le sera pas car elle comprendra, en plus d’un
harmonique de pulsation ω, des harmoniques de rang supérieur en 2ω, 3ω etc. A
fortiori, avec une entrée non sinusoïdale périodique, on obtiendra des multiples
entiers des harmoniques présents dans e(t).

Conclusion : A la traversée d’un système non-linéaire, un signal voit son
spectre enrichit.

Pour quantifier cet enrichissement spectral, on analyse le spectre de la réponse
à une entrée sinusoïdale e(t) = E cos(ωt), qui s’écrit

s(t) = S0 + S1 cos(ωt+ ϕ1) +
∑
n>1

Sk cos(nωt+ ϕn) .

On mesure alors le rapport entre la moyenne quadratique (ou l’énergie) des com-
posantes spectrales ajoutées par le système (souvent non désirées) et la moyenne
quadratique (l’énergie) du signal total :

Définition : Taux de Distorsion Harmonique (DTH, en dB)

TDH = 10 log10

(∑
k>1 S

2
k/2

S2
eff

)

II. Décomposition d’un signal non périodique en in-
tégrale de Fourier

Transformation de Fourier

Soit s : t → s(t) une fonction réelle non périodique. Sous des conditions ma-
thématiques peu restrictives pour des signaux physiquement réalisables (cf pro-
gramme de licence), on peut écrire s(t) sous la forme d’une intégrale de Fourier

s(t) = 1√
2π

ˆ +∞

−∞
Ŝ(ω) eiωtdω avec Ŝ(ω) = 1√

2π

ˆ +∞

−∞
s(t) e−iωtdt

Les fonctions s et Ŝ sont dites transformées de Fourier l’une de l’autre.

La fonction Ŝ est le spectre de la fonction s (module et argument).
Ainsi, on peut généraliser la notion de spectre à des fonctions non
périodiques. Celui-ci devient continu et on perd la notion d’harmo-
nique.

Remarque : Supposons que t soit la variable temps, ω est alors la pulsation et
f = ω/2π est la fréquence.
Soit ∆t l’extension temporelle de la fonction f(t) et ∆f l’extension en
fréquence de son spectre F . On a la propriété suivante :

∆t.∆f ≈ 1

Plus un signal est bref (long), plus son spectre est large (étroit) 6.

On trouve une illustration de cette propriété ci-dessous pour un signal prenant
la forme d’un « paquet d’onde » d’enveloppe gaussienne.

6. Le principe d’indétermination de Heisenberg est étroitement relié à cette propriété

3



PCSI 1 - Stanislas - Complément de Cours - Analyse de Fourier A. MARTIN

4


