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Analyse de Fourier

I. Décomposition d’un signal périodique en série de
Fourier

I.1. Théoréme de Fourier

Soit s : t — s(t) une fonction réelle T-périodique. On pose w = 2% = 2xf.
Sous des conditions mathématiques peu restrictives (cf programme de 2¢ année),
on peut alors écrire s(t) sous la forme d’un développement en série de Fourier

(DSF)

+o0
s(t) =ao + Z[an cos(nwt) + by, sin(nwt)]

n=1

ou la valeur moyenne du signal s(t) est représentée par le coefficient

1 T
ap = 7/ s()dt =< s(t) >
T 0

et a, et by, sont les coefficients des harmoniques de rang n, donnés par*

2 [T 2 (T
ap, = —/ s(t) cos(nwt)dt et b, = —/ s(t) sin(nwt)dt .
T Jo T Jo
L’harmonique de rang n = 1 est appelée le (mode) fondamental.

En bref : une fonction s de période T' peut s’écrire comme une somme finie ou
infinie de fonctions sinusoidales plus une constante.

1.2. Autres écritures de la décomposition en série de Fourier

—+oo
b
s(t) = ap + E Ay cos(nwt + )| avec A, =+/a2 +b2 ,et tanyp, = ——
an

n=1

-~ inwt 1 r —inwt 1 .
s(t) = Z Cpe avec C), = T/ s(t)e dt = i(a” —iby)

n=—oo

1. Ces relations ne sont pas & connaitre cette année.

1.3. Propriétés

Les intégrales précédentes peuvent étre calculées sur un intervalle [tg, tg+ T
avec to quelconque.

Si la fonction s est paire : | b, = 0|.

Si la fonction s est impaire : ‘ ap =10 ‘ et ’ an =0 ‘

e Le spectre de la fonction s est le diagramme
donnant I'amplitude des différentes harmo-
niques A,, en fonction de la pulsation nw (ou
fréquence nf avec w = 2x f).

Le spectre permet donc de visualiser I'impor-
tance relative des différentes harmoniques.

Remarque : on montre facilement que néces-
sairement A, m 0 si la fonction est déve- |

loppable en série de Fourier.
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1.4. Exemples

o Un signal triangle symétrique impair 2, de pulsation w et d’amplitude Ey a
pour DSF :
_ 8E) w—

772
n=0

» sin[(2n + 1)wi]

ue(?) (2n +1)2

(=1

e Un signal créneau symétrique impair 3, de pulsation w et d’amplitude Ey a
pour DSF :

4By o sin[(2n + 1wt

T = 2n+1

Ue(t)

1.5. Energie et valeur efficace

L’énergie portée par le signal s(¢) (ou sa puissance...) est en général une gran-
deur qui en dépend quadratiquement : £(t) = K s?(t) ot K est une constante.

n
2. La forme paire s’obtient en remplagant ¢t par t +7'/4, ce qui remplace % sin... par
__F1
Gniy® COS -
3. De méme on obtient la forme paire en translatant : ¢ — t & T/4, ce qui remplace
FED
2n+1

in... par cos....

_1
41 S
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En régime périodique on s’intéresse souvent a 1’énergie moyenne sur une période
< &€ >7, qui est associée & la valeur efficace Se de s(t) par

1 /T e
<E>= 7/ Ks*(t)dt = K S% avec Sen = —/ s2(t) dt |.
T 0 T 0

Nous avons montré au début de ’année les moyennes quadratiques de deux
signaux asynchrones s’additionnent lorsqu’on fait la somme des signaux? :

< (s1+82)? >=< 5] >+ < s3>

On en déduit le théoréme suivant® tres intuitif :

THEOREME : Le carré de la valeur efficace de s(t) est la somme des carrés des
valeurs efficaces de ses composantes spectrales (valeur moyenne, fonda-
mental et harmoniques).

o0
A2
2 2 n
Seff = Qg + E 7
n=1

Point-de-vue énergétique : I’énergie moyenne est la somme des
énergies moyennes de toutes les composantes spectrales.

1.6. Cas particulier important : produit de deux fonctions pé-
riodiques

a. Signaux sinusoidaux
Le produit de deux fonctions sinusoidales peut étre ré-écrit comme une somme
de fonctions sinusoidales (on suppose wy > ws) :
cos(wit + ¢1). cos(wat + p2) = % cos (w1 — wo)t + @1 — pa) +
% cos ((w1 + wa)t + 1 + 2)

En toute rigueur, cette fonction n’est a priori pas périodique, sauf si Z—; est un
nombre rationnel. Toutefois cette restriction est peu contraignante en physique
car toute mesure s’exprime par un nombre décimal. En pratique donc le rapport

de deux pulsations (ou périodes) sera toujours rationnel : % = L. Et on pourra

4. Deux signaux asynchrones n’interférent pas.
5. Théoréme de Parceval. Les conditions de validité sont la plupart du temps vérifiées en
physique (sommabilité de la série Za2).

toujours identifier une période T dans le signal, définie par : T' = pT; = ¢T5. On
peut donc tout de méme interpréter la décomposition ci-dessus comme un DSF,
ou un spectre de raie :

Le produit de deux fonctions sinusoidales de pulsations wy et wy comprend deux
composantes spectrales de pulsations |w; — wa| et w1 + ws.

b. Signaux périodiques

Généralisons a deux fonctions périodiques s; et so respectivement de périodes
Ty et Ty (To > T1). Le produit s;.89 n’est a priori pas périodique si T # T5, sauf
si 7+ est un nombre rationnel... méme remarque. On peut donc obtenir le spectre
de s1.s5 simplement en multipliant les DSF terme a terme, ce qui est rigoureux
mathématiquement lorsque I'une des fonctions a un DSF avec un nombre fini de
terme. Toutefois, en physique expérimentale la limite en précision des appareils
de mesure conduit naturellement a tronquer les DSF et ne retenir qu’un nombre
fini d’harmoniques. D’apres la propriété ci-dessus, on obtiendra donc un spectre
de raies :

Le produit de deux fonctions périodiques de périodes 17 et T5 a un spectre com-
prenant I’ensemble des composantes de fréquences construites par combinaisons
linéaires entiéres de fi et fo (restreintes aux valeurs positives) :

{Infi +mfs]} avec (n,m) e Z?

c. Exemples

e cos?(wt) = 1(14 cos(2wt)) est un signal Z-périodique comprenant une com-
posante continue et une seule harmonique, le fondamental (de pulsation 2w).

e cos"(wt) a un spectre comprenant l’ensemble des composantes de fré-
quences : {0, f,2f,...,nf}. C’est biensiir aussi le cas de sin™ (wt) et cos* (wt)*
sin™ ¥ (wt)

d. Non-linéarité d’un systéme - distorsion

Par simplicité, considérons un systéme qui répond & un signal d’entrée e(t) par
un signal de sortie s(t) via une relation non différentielle (une équation différen-
tielle d’ordre 0). Si le systéme est linéaire, on a donc deux constantes a et b telles
que

s(t)=a+be(t).

Dans de nombreux contextes, le systeme qu’on souhaite linéaire ne ’est cependant
pas parfaitement. Par exemple ceci arrive souvent lorsqu’on augmente ’amplitude
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des signaux utilisés (existence de saturations, approximation linéaire non valable
dans un développement limité...). Il arrive aussi que cette non-linéarité soit une
propriété que I'on recherche. On a alors une réponse qui s’écrit plutot :

s(t)=a+be(t)+ce*(t) +de3(t) + ...

D’apres les exemples précédents, on comprend que si Pentrée e(t) est sinusoidale
de pulsation w, alors la sortie ne le sera pas car elle comprendra, en plus d’un
harmonique de pulsation w, des harmoniques de rang supérieur en 2w, 3w etc. A
fortiori, avec une entrée non sinusoidale périodique, on obtiendra des multiples
entiers des harmoniques présents dans e(t).

CONCLUSION : A la traversée d’un systéme non-linéaire, un signal voit son
spectre enrichit.

Pour quantifier cet enrichissement spectral, on analyse le spectre de la réponse
a une entrée sinusoidale e(t) = E cos(wt), qui s’écrit

s(t) = So + S1 cos(wt + 1) + Z Sk cos(nwt + ¢y,) .
n>1

On mesure alors le rapport entre la moyenne quadratique (ou I’énergie) des com-
posantes spectrales ajoutées par le systeme (souvent non désirées) et la moyenne
quadratique (I’énergie) du signal total :

DEFINITION : Taux de Distorsion Harmonique (DTH, en dB)

2> 5;3/2>

€

Il. Décomposition d’un signal non périodique en in-
tégrale de Fourier

Transformation de Fourier

Soit s : t — s(t) une fonction réelle non périodique. Sous des conditions ma-
thématiques peu restrictives pour des signaux physiquement réalisables (cf pro-
gramme de licence), on peut écrire s(t) sous la forme d’une intégrale de Fourier

N

+oo oo
s(t) = \/%/ S(w) eWldw | avec S(w) = ﬁ/ s(t) oWt gt

Les fonctions s et S sont dites transformées de Fourier I'une de 'autre.

La fonction S est le spectre de la fonction s (module et argument).
Ainsi, on peut généraliser la notion de spectre a des fonctions non
périodiques. Celui-ci devient continu et on perd la notion d’harmo-
nique.

REMARQUE : Supposons que t soit la variable temps, w est alors la pulsation et
f =w/2m est la fréquence.
Soit At l'extension temporelle de la fonction f(t) et Af l’extension en
fréquence de son spectre F. On a la propriété suivante :

At Af =1

Plus un signal est bref (long), plus son spectre est large (étroit) .

On trouve une illustration de cette propriété ci-dessous pour un signal prenant
la forme d’un « paquet d’onde » d’enveloppe gaussienne.

6. Le principe d’indétermination de Heisenberg est étroitement relié a cette propriété
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signal: s(t) = exp(—(£)?)cos(2n})
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