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MÉCANIQUE
Soignez la présentation et la rédaction, qui doit être complète et concise. Tout résultat doit être justifié, et
mis en valeur. Les résultats doivent d’abord être écrits sous forme littérale et doivent être homogènes. Les ré-
sultats numériques doivent avoir un nombre de chiffres significatifs vraisemblable. Les schémas doivent être clairs,
suffisamment grands et lisibles. Si vous n’arrivez pas à montrer un résultat, admettez-le clairement et poursuivez.

CALCULATRICES INTERDITES
On effectuera toutes les applications numériques à la main avec un seul chiffre significatif.

Les questions 4 à 7 nécessite le cours sur le moment cinétique. La question 17 nécessite de connaître
l’algorithme de la dichotomie pour la résolution d’une équation à une inconnue.

I. Points de Lagrange du système Soleil-Terre
Les points de Lagrange sont des positions relatives au système Soleil-Terre satisfaisant un équilibre

entre les forces gravitationnelles exercées par le Soleil et la Terre d’une part, et la force centrifuge 1 causée
par la rotation du système Soleil-Terre d’autre part. Ces cinq positions remarquables, appelées L1, L2,
L3, L4 et L5, peuvent avoir un intérêt pour les missions spatiales, ou plus généralement pour comprendre
la dynamique du système solaire 2. Des missions spatiales récentes ont donné lieu au choix du point L2
pour positionner des instruments d’observation (Planck, Gaia, James-Webb).

On cherchera dans ce problème à déterminer la position des points de Lagrange qui se situent sur l’axe
Soleil-Terre, à savoir : L1, L2, et L3. Nous aborderons de façon simplifiée la question de leur stabilité.

Aucune connaissance préalable sur la force centrifuge ne sera nécessaire pour répondre à ce problème.
La section b de ce problème n’est pas nécessaire pour traiter les suivantes. Les sections d, e et f sont
indépendantes les unes des autres, mais nécessitent chacune les sections a et c.

On se place dans le référentiel héliocentrique R, supposé galiléen, d’origine O placée au centre de masse
du Soleil, dont la masse est notée MS . On note T le centre de masse de la Terre, de masse MT , et M le
centre de masse d’un petit objet de masse m négligeable devant MT , qui évolue sous l’influence du Soleil
et de la Terre. On pourra considérer que le mouvement de la Terre n’est pas influencé par M . On note
G la constante de gravitation universelle.

Rappel : si besoin on pourra linéariser la fonction (1 + ε)α en utilisant

(1 + ε)α ≈ 1 + α ε pour ε� 1 .

a. Mouvement simplifié de la Terre autour du Soleil

1. Rappeler l’expression de la force d’attraction gravitationnelle exercée par le Soleil sur la Terre, sous
l’hypothèse d’un Soleil à symétrie sphérique. Montrer que le mouvement de T dans R est plan.

2. On suppose que le mouvement de T est circulaire, de rayon OT = d. Établir l’expression de la
vitesse angulaire Ω de ce mouvement en fonction de d et des constantes du problème nécessaires.
Ce mouvement est-il uniforme ?

1. La force dite centrifuge n’est pas une vraie force. Elle est introduite en tant que pseudo-force pour permettre l’ap-
plication du Principe Fondamental de la Dynamique dans référentiel non galiléen en rotation par rapport à un référentiel
galiléen.

2. En particulier, les points de Lagrange du système Soleil-Jupiter permettent de comprendre la localisation de certains
amas d’astéroïdes dans le système solaire.
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b. Stabilité de l’orbite terrestre

On suppose ici qu’à un instant supposé initial t = 0, la Terre est située sur l’orbite circulaire décrite
précédemment, à la distance OT = d et vitesse angulaire Ω, mais que sa vitesse ~v0 à cet instant n’est
pas parfaitement orthoradiale :

~v0 = v0r ~ur + dΩ ~uθ avec |v0r| � dΩ ,

où les vecteurs ~ur et ~uθ représentent la base polaire usuelle dans le plan du mouvement de T . Sa trajectoire
n’est donc pas circulaire. On ne cherchera pas ici à décrire de façon exacte cette trajectoire.

3. Montrer que la force d’attraction du Soleil est conservative et établir l’expression de son énergie
potentielle en fonction de la distance r = OT .

4. Rappeler la loi des aires, et montrer que le mouvement de T la satisfait. Que vaut la constante des
aires d’après les conditions initiales ?

5. Montrer que le système Terre peut-être assimilé à un système conservatif à un unique degré de
liberté r soumis à une énergie potentielle effective Ep eff(r) dont on donnera une expression en
fonction des constantes du problème.

6. Montrer graphiquement que la trajectoire de la Terre est bornée, et inscrite entre deux cercles de
rayons rm et rM > rm (qu’on ne cherchera pas à expliciter).

7. Montrer que le minimum de potentiel autour duquel la Terre oscille est l’orbite circulaire de réfé-
rence décrite en 2..

c. Équations des points de Lagrange

On suppose dorénavant que la Terre évolue sur l’orbite circulaire déterminée en 2., à la vitesse angulaire
Ω et à la distance OT = d du Soleil. On s’intéresse maintenant au mouvement du point M , qui sera
repéré par les coordonnées polaires (r, θ). On suppose que M est situé sur l’axe Soleil-Terre (OT ), à une
distance r = OM . On cherche les distances r = ri avec i = 1, 2, ou 3, permettant à M de se maintenir
théoriquement sur cet alignement et à cette même distance constante, auquel cas le mouvement de M
est nécessairement circulaire uniforme comme celui de la Terre.

8. Quelle doit-être la vitesse angulaire ω de M ?
En appliquant le principe fondamental de la dynamique à M , établir l’équation vérifiée par r2,
distance d’un point L2 qui serait situé au delà de la Terre par rapport au Soleil. On pourra d’abord
faire un schéma.

9. Quelle forme prendra cette équation pour les positions r1 et r3 respectivement des points L1 (situé
entre le Soleil et la Terre) et L3 (situé au-delà du Soleil par rapport à la Terre) ?

d. Analyse des solutions

Pour démontrer l’existence et l’unicité de chacune de ces trois solutions, on étudie le point matériel M
d’un point de vue énergétique. Cela nécessite de se placer dans le référentiel R′ centré en O tournant
avec la Terre à la vitesse angulaire Ω, de telle sorte que l’axe (OT ) et M y sont fixes. On admet que
dans ce référentiel non galiléen, il faut alors ajouter la pseudo-force appelée force centrifuge :

~Fc = mΩ2 ~r avec ~r = −−→OM .

Remarque : L’utilisation de ce référentiel non galiléen est limitée à cette section du problème.
10. Montrer que cette force centrifuge est conservative et établir l’expression de son énergie potentielle

Ep c en fonction de r. On pourra la prendre nulle en r = 0.
11. En déduire l’énergie potentielle totale Ep tot(r) de M dans R′ en fonction des constantes du pro-

blème.
Pour simplifier l’analyse, on pourra utiliser pour cette question et les 2 suivantes, une variable r
algébrique (r < 0 possible) pour englober les trois points de Lagrange avec une seule expression de
l’énergie potentielle.
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Théorème : La somme de deux fonctions concaves est concave.

12. Représenter graphiquement, en fonction de r, l’allure de chacune des trois composantes de Ep tot(r),
puis l’allure de Ep tot(r). On s’appuiera simplement sur le théorème cité précédemment, sans calcul
supplémentaire.

13. En déduire l’existence, le nombre, et le caractère stable ou instable des différentes positions d’équi-
libre ri dans le référentiel R′.

e. Évaluation numérique des racines

On cherche à trouver la valeur numérique de la position r2 du point L2. Dans la suite on travaille avec
la grandeur adimensionnée u = r2

d .
14. En utilisant la relation trouvée en 2., montrer que l’équation trouvée en 8. peut se récrire

u− 1
u2 −

q

(1− u)2 = 0

et donner l’expression de la constante q en fonction des constantes du problème.
15. En déduire que la position de L2 est d’autant plus proche de la Terre que cette dernière est de

masse négligeable devant la masse du Soleil.
16. Puisque MT �MS , on pose donc u = 1 + ε avec ε� 1. Récrire la relation ci-dessus sous la forme

f(ε) = 0 . (1)

Puis en linéarisant cette relation, en déduire une solution littérale approchée de ε, puis de r2.
À l’aide de cette expression, on obtient une valeur approchée ε ≈ 0, 010.

17. Proposer un programme Python permettant de calculer une valeur approchée de ε par la méthode
de la dichotomie appliquée à l’équation (1), avec une précision relative de l’ordre de 10−3.
Quel est le nombre approximatif d’itérations nécessaire au sein de ce programme pour atteindre
cette précision ?

f. Évaluation du temps caractéristique en L2

L’équation trouvée en 8. détermine la position r2 du point L2 en rotation avec le système Soleil-Terre.
On suppose le pointM très légèrement décalé de cette position, mais toujours sur l’axe (OT ). On notera
donc OM = r = r2 + x avec |x| � r2. On étudie alors son mouvement au voisinage du point L2 en
considérant qu’il est constamment maintenu sur l’axe (OT ) 3.
18. Écrire l’équation du mouvement vérifiée par x(t). En linéarisant cette équation au voisinage de

x = 0, montrer qu’elle prend la forme
ẍ = Ω2 k x

où k est une constante sans dimension que l’on exprimera exclusivement en fonction de u = r2
d , de

MT et MS .
19. En déduire l’expression du temps caractéristique τ d’évolution de x(t) et la forme générale de la

solution x(t).
20. Donner un ordre de grandeur numérique du temps au bout duquel il est nécessaire de corriger la

trajectoire d’un instrument situé au voisinage de L2, pour qu’il y reste.
Données : u = 1 + ε avec ε ≈ 1, 003× 10−2 et MT

MS
≈ 3, 0× 10−6.

* * * Fin de l’épreuve * * *

3. Une étude plus exacte devrait considérer des mouvements s’écartant de l’axe (OT ), mais nécessiterait l’utilisation du
référentiel non galiléen R′, dans lequel on doit considérer les forces centrifuge et de Coriolis.
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