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OPTIQUE GÉOMÉTRIQUE ET ÉLECTRICITÉ

I. Étude du microscope optique dans le cadre de l’optique géométrique

I.1. Grossissement
1. Dans les conditions de Gauss les lentilles sont stigmatiques. L’image d’un point objet B par L1 est donc

obtenue par intersection de la portion émergente de deux rayons remarquables (à 1 seul chevron ci-
dessous) : celui incident parallèle à l’axe optique, qui émerge en passant par F ′1, et celui passant par O1
qui est non dévié. L’image A1 de l’objet A est sur l’axe, et est obtenue par aplanétisme.
Comme cette image intermédiaire est située dans le plan focal objet de L2, on a A1 = F2 et B1 est un
foyer objet secondaire de L2. Ainsi son image est à l’infini dans la direction donnée par le rayon non dévié
passant par O2.

2. On s’appuie sur le schéma ci-dessus, en considérant −−−→A1B1 en tant qu’objet pour l’oculaire :
• À l’œil nu et à une distance dm, l’objet serait vu sous l’angle α petit vérifiant : tanα = −A1B1

dm
≈ α.

• À travers l’oculaire, l’image étant à l’infini elle est vue sous l’angle : α′ ≈ tanα′ = −A1B1
f ′

2
≈ α.

On en déduit

Gc,oc = dm

f ′2
⇔ f ′2 = dm

Gc,oc
= 2, 5 cm .

3. D’après la relation de Newton, le grandissement vérifie

γob = A1B1

AB
= −F

′
1A1
f ′1

= −∆
f ′1

⇒ f ′1 = ∆
|γob|

= 8, 0mm .
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4. En l’absence de microscope, l’objet −−→AB est vu de la distance dm sous un angle α ≈ tanα = −AB
dm

. On en
déduit

Gc =
∣∣∣∣α′α
∣∣∣∣ ≈

∣∣∣∣∣A1B1
f ′2

.
dm

AB

∣∣∣∣∣ d’où Gc = |γob|.Gc, oc = 200 .

I.2. Autres caractéristiques visuelles

Latitude de mise-au-point

5. L’image de A∞ par L1 est en F2 donc d’après la relation de conjugaison de Newton :

F1A∞ = − f ′21
F ′1F2

d’où F1A∞ = −f
′2
1

∆ = −0, 40 mm .

L’objet est extrêmement proche du foyer objet de l’objectif (à 5% de la distance focale).
6. On note les conjugaisons suivantes : Am

L1−→ Am1
L2−→ A′m avec F ′2A′m = −dm.

De nouveau les relations de Newton sont utilisées :

F1Am = − f ′21
F ′1Am1

avec F ′1Am1 = F ′1F2 + F2Am1 = ∆ + F2Am1 et F2Am1 = − f ′22
F ′2A

′
m

= f ′22
dm

.

Cela conduit à F1Am = − f ′2
1

∆+
f ′2

2
dm

. Or Lam = A∞F1 + F1Am donc

Lam = −f
′2
1

∆ − f ′21

∆ + f ′2
2

dm

= −f
′2
1

∆

1−
(

1 + f ′22
dm∆

)−1
 = 6, 2µm .

L’intervalle de réglage possible est donc extrêmement étroit et nécessite l’usage de vis micromé-
triques.

Les diaphragmes du microscope

7. On trace deux rayons extrêmes issus de l’objet A et passant par les bords de Do (cf figure ci-contre,
rayons à 2 chevrons). Le faisceau ainsi défini converge en A1 = F2, c’est-à-dire au niveau de Dc. Plus RDO
est grand plus ce faisceau maximal sera d’angle au sommet important, donc plus la quantité de lumière
entrant dans l’instrument sera grande, et donc plus la luminosité de l’image A′ sera forte. Ceci est toujours
vrai pour tous les points constituant l’objet observé par le microscope. Par contre Dc ne joue pas sur cette
luminosité puisque chaque faisceau est toujours réduit à un point au niveau de Dc.

8.
Le centre de Do est F ′1, donc la relation de Newton
conduit à

F ′2C = − f ′22
F2F ′1

= f ′22
∆ = 3, 9 mm .

Tout rayon passant à l’intérieur de Do passera dans
le cercle oculaire. En plaçant la pupille de l’œil au
niveau de ce cercle oculaire, l’œil va capter tout le
flux lumineux déterminé par l’ouverture de Do.

9. Le diphragme de champ Dc est situé dans le plan de l’image intermédiaire, donc il limite la taille de cette
dernière : A1B1 doit être inférieur à 2RDC (avec A1 et B1 hors de l’axe optique). Par conséquent cela
limite la taille AB des objets observables via le grandissement, c’est-à-dire le champ ABmax :

|γob| =
2RDC
ABmax

⇔ ABmax = 2RDC
|γob|

= 0, 8 mm .
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10. L’ajoût du verre de champ convergent nécessite que l’image A1B1 par l’ojectif soit en arrière de Dc, et
donc un objet virtuel pour L3. Par conséquent L3 induit un grandissement supplémentaire vérifiant

γ3 = f ′3
F3A1

= f ′3
F3O3 +O3A1

= f ′3
F3A1

= f ′3
f ′3 +O3A1

< 1

donc le champ est maintenant limité par la valeur du grandissement global lié à L1 et L3 :

|γob.γ3| =
2RDC
ABmax

⇔ ABmax = 2RDC
|γob.γ3|

>
2RDC
|γob|

.

Le champ est donc supérieur au cas d’un oculaire à une seule lentille.

II. Circuit à plusieurs lampes

1. a) La puissance reçue par R′ est PJ = ui = u2

R′ . La loi du pont diviseur de tension conduit alors à

u = R′

R+R′
E ⇒ PJ = R′E2

(R+R′)2 .

b) En dérivant PJ par rapport à R′ on obtient un maximum pour R′ = R avec PJ max = E2

4R .

2. a) On calcule le courant global grâce à la loi des mailles et la résistance équivalente :

E = Reqi ⇔ i = E

Req
avec Req = R+

( 1
R′

+ 1
RL

)−1
= R+RL

(
1 + RL

R′

)−1
.

Puis la loi du pont diviseur de courant permet de conclure :

iL = i
R′

R′ +RL
d’où iL = E(

1 + RL
R′

) (
R+RL

(
1 + RL

R′

)−1
) = E

R
(
1 + RL

R′

)
+RL

.

Remarque : il n’est pas possible de réutiliser l’expression précédente de u, ni même de i, car la présence
de RL change i et u.

b) On obtient iL = 0, 22 A. La lampe n’est donc pas pleinement allumée.
3. a) On obtient une nouvelle résistance équivalente inférieure à la précédente :

R′eq =
( 1
R

+ 1
R0

)−1
+
( 1
R′

+ 1
RL

)−1
= R

(
1 + R

R0

)−1
+RL

(
1 + RL

R′

)−1
< Req

donc le courant i = E
R′
eq

sera supérieur au précédent, et donc iL sera aussi supérieur car on
n’a pas modifié le pont diviseur de courant donnant iL. Ainsi, la lampe brillera plus fort que
précédemment.
Le calcul consiste à remplacer R par R

(
1 + R

R0

)−1
dans l’expression précédente, donc

iL = E

R
(
1 + R

R0

)−1 (
1 + RL

R′

)
+RL

= 0, 32 A .

La lampe est donc pleinement allumée.
b) On en déduit la puissance et l’énergie reçues et dissipées par la lampe :

PL = RLi
2
L d’où WL = PL∆t = 21, 8 kJ .
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III. Télégraphe sans fil (d’après IPHO 2018)

1. À tout instant, ue = u1 − u2. Les tensions aux bornes des condensateurs évoluent de façon continue donc
ue aussi 1, et les condensateurs sont déchargés initialement, donc

ue(0) = u1(0)− u2(0) = 0 < UE

Donc l’éclateur est dans l’état interrupteur ouvert au départ juste après la fermeture de l’interrupteur.
2. Tant que l’éclateur est un interrupteur ouvert, aucun courant ne circule à travers lui donc la maille

élémentaire de droite (LC2) n’est plus reliée à celle de gauche par un courant.
Cette dernière peut donc être considérée seule (ci-contre), et vérifie

∀t ∈]0, t1[ , τ du1
dt + u1 = E avec τ = RC1 .

Le second membre étant constant, la solution s’écrit

u1(t) = E + λe−
t
τ avec λ ∈ R

La condition de continuité initiale donne

u1(0) = 0 = E + λ→ λ = −E d’où u1(t) = E
(
1− e−

t
τ

)
.

3. On passe à la limite en t1 par continuité de u1 :

u1(t1) = UE = E
(
1− e−

t1
τ

)
⇔ t1 = −τ ln

(
1− UE

E

)
.

4. 5. R = − t1

C1 ln
(
1− UE

E

) = 1, 0× 103 Ω.

6. À l’issue de cette phase de ré-équilibrage des charges, on doit
avoir, par respect de la loi des mailles :

u1(t+1 ) = u2(t+1 ) = U0 ⇔ U0 = q1(t+1 )
C1

= q2(t+2 )
C2

De plus la charge totale est conservée donc

q1(t+1 ) + q2(t+2 ) = q1(t−1 ) = C1UE

En combinant ces deux relations on trouve U0 = UE

1 + C2
C1

.

7. On a donc U0 � UE , et donc q1(t+1 )� C1UE = q1(t−1 ) . Donc le condensateur 1 s’est quasi intégralement
déchargé.

8. La maille élémentaire de droite se trouve indépendante de celle de gauche puisque l’éclateur est en état
interrupteur ouvert.

La loi des mailles s’écrit u2 = L di
dt′ avec i = −C2

du2
dt′ d’où l’équation différentielle

∀t′ ∈]0, t1[ , ü2 + ω2
0u2 = 0 avec ω0 = 1√

LC2
.

1. La conversion en simple fil de l’éclateur va toutefois impliquer une discontinuité puisque la tension ue va brutalement passer
de UE à 0, ce qui est une contradition liée à la modélisation de l’éclateur.
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La solution générale s’écrit u2(t′) = A cos(ω0t
′) + B sin(ω0t

′) avec (A,B) ∈ R2. Les conditions initiales
sur les grandeurs continues u2 (tension aux bornes d’un condensateur) et i (courant à travers une bobine)
permettent d’obtenir les constantes d’intégration :
• u2(t′ = 0) = U0 = A ;
• i(t′ = 0) = 0 = −C2u̇2(t′ = 0) = Bω0 ⇒ B = 0.

Finalement ∀t′ ∈]0, t1[ , u2(t′) = U0 cos(ω0t
′) qui oscille de façon harmonique à la période T0 = 2π

√
LC2 .

9. À l’instant initial t′ = 0, le stock d’énergie est exclusivement contenu dans la capacité C2, et vaut Eel(0) =
1
2C2U

2
0 . Lorsque les oscillations ont disparu on a u2 = 0 et i = 0 donc le stock d’énergie est nul. L’énergie

transmise à l’antenne au cours du cycle est donc Wa = 1
2C2U

2
0 .

10. On obtient les graphes suivants.

11. En présence de la résistance r l’équation différentielle sera

∀t′ ∈]0, t1[ , ü2 + 2
τ2

du2
dt′ + ω2

0u2 = 0 avec τ2 = 2L
r
.

Les oscillations correspondent à un régime pseudo-périodique, dont le temps caractéristique
d’amortissement est τ2. Par convention considérons que les oscillations doivent perdurer au minimum
à 5% de leur valeur initiale à la date t1/2, ce qui impose

3τ2 ≥
t1
2 ⇔ L

r
≥ t1

12 .

12. On retient couramment et de façon large le domaine audible suivant pour les fréquences : f ∈ [20 Hz; 20 kHz]
(la limite supérieure est affectée par l’âge...).

Ici la fréquence de réception des trains d’onded successifs est de f1 = 1
t1

= 400 Hz, ce qui est parfaite-

ment audible.
13. La fréquence d’émission est celle correspondant à l’échelle de temps courte T0, celle des oscillations de

chaque train d’onde. Elle est donc modifiable en utilisant une capacité C2 réglable, ou une bobine
d’inductance L réglable.
Remarque : l’étape de filtrage au niveau de récepteur permet de choisir la fréquence voulue et donc le canal
de communication voulu.

5


