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ÉLECTRICITÉ

I. Circuit en régime transitoire

1. En régime permanent stationnaire, le schéma électrique équivalent est
représenté ci-contre. Tous les courants sont donc nuls, et donc toutes
les tensions aux bornes de résistances le sont aussi. On a alors :

u1∞ = 0 , u2∞ = −E , u1,0 = 0 , u2,0 = 0 .

2. En passant par le stock d’énergie et en utilisant la continuité des tensions aux bornes des condensateurs,
on obtient : 

WC1 =
´∞

0 Cu1
du1
dt dt = 1

2Cu
2
1∞ −

1
2Cu

2
1,0

WC2 =
´∞

0 Cu2
du2
dt dt = 1

2Cu
2
2∞ −

1
2Cu

2
2,0

=⇒


WC1 = 0

WC2 = 1
2CE

2 > 0

3. Sans connaître explicitement i(t), on peut l’intégrer :

WG =
ˆ ∞

0
Eidt = −EC

ˆ ∞
0

du2
dt dt = CE (u2,0 − u2∞) =⇒ WG = CE2 > 0 .

4. La puissance fournie par le générateur se répartit dans l’ensemble des dipôles d’après la loi des mailles et
la loi des nœuds i = u1

R + C du1
dt :

PG = Ei = Ri2 +
d 1

2Cu
2
2

dt + u2
1
R

+
d 1

2Cu
2
1

dt = P2R +
d 1

2Cu
2
2

dt +
d 1

2Cu
2
1

dt ,

en notant P2R la puissance totale reçue par les deux résistances. En intégrant ceci entre t = 0 et t→∞
on obtient

WG = W2R +WC1 +WC2 ⇔ W2R = WG −WC1 −WC2 = 1
2CE

2 .

5. Par continuité de la tension aux bornes des condensateurs, on a u1(0+) = u1(0−) = u1,0 = 0 et u2(0+) =
u2(0−) = u2,0 = 0.
La loi des mailles donne de plus : ∀t > 0, E = Ri− u2 + u1 =⇒ i(0+) = E

R .
La loi des nœuds permet de déterminer du1

dt (0+) :

du1
dt (0+) = i(0+)

C
− u1(0+)

RC
⇔ du1

dt (0+) = E

RC
.

6. On repart de la loi des mailles

∀t > 0, E = Ri− u2 + u1 avec i = u1
R

+ C
du1
dt

par la loi des nœuds. Or i = −C du2
dt donc il faut dériver la loi des mailles, ce qui donne

∀t > 0, 0 = R
di
dt + i

C
+ du1

dt = R
d
dt

(
u1
R

+ C
du1
dt

)
+ 1
C

(
u1
R

+ C
du1
dt

)
+ du1

dt

⇔ ∀t > 0 , d2u1
dt2 + 3

RC

du1
dt + 1

(RC)2 u1 = 0 .
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On identifie 1 ω0 = 1
RC

et Q = 1
3 <

1
2 . Seul le régime apériodique est donc possible ici.

Remarque : On peut établir cette équation différentielle en supposant d’abord un régime sinusoïdal forcé
de pulsation ω, pour trouver la fonction de transfert u1

e . Puis on repasse en écriture temporelle puisque
cette relation est valable ∀t. Comme e = E = constante ∀t > 0, on obtient un second membre nul pour
t > 0.

7.
D’après les conditions initiales on a un
démarrage croissant (du1

dt (0+) = E
RC > 0)

depuis u1,0 = 0 et une limite u1∞ = 0. On
aura donc un extremum, qui traduit que
C1 commence par se charger puis se dé-
charge. On ne pourra pas avoir plusieurs
extrema par une somme de 2 exponen-
tielles qui décroissent chacune en valeur
absolue. Cela donne l’allure ci-contre.

1. On peut remarque que cette équation différentielle est vérifiée aussi pour t < 0. Toutefois le second membre n’est pas défini
en t = 0.
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II. Étude en puissance d’un circuit «bouchon»

1. U : amplitude de u(t). ϕ : phase à l’origine de u(t).
IL : amplitude de iL(t). ψ : phase à l’origine de iL(t).

2. On utilise le dipôle équivalent à l’association parallèle de R, L et C. On pose Zeq son impédance et Y eq

son admittance. Ainsi

Y eq = I

U
= 1
R

+ jCω + 1
jLω

d’où U = R

1 + jRCω + R
jLω

I = R

1 + j
(
RCω − R

Lω

)I .
Par identification avec la forme proposée dans l’énoncé, on en déduit

{
Q/ω0 = RC

ω0Q = R/L
⇒

{
Q = R

√
C/L (facteur de qualité)

ω0 = 1/
√
LC (pulsation propre)

3. U = |U | = RI√
1 +Q2(x− 1/x)2 .

4. La fonction g(x) = 1 + Q2(x − 1/x)2 vérifie g(x) ≥ 1 et g(x = 1) = 1 donc elle est minimale en
x = 1. L’amplitude U est donc maximale en xr = 1 ou ωr = ω0 qui constitue une résonance, telle que
Umax = U(x = 1) = RI .

5.

ϕ = arg(U) = arg(RI)−arg(1+jQ(x−1/x)) d’où ϕ = − arctan(Q(x− 1/x)) = arctan(Q(1/x− x)) .

SCHEMA

6. La tension u en RSF a pour expression (avec x = ω/ω0)

u(t) = <e(u) = U cos(ωt+ ϕ) = RI√
1 +Q2(x− 1/x)2 cos (ωt+ arctan(Q(1/x− x)))

À la résonance, x = 1 (ou encore ω = ω0), donc u(t) = RI cos(ω0t) .
7.

u = jLω iL ⇔ IL = U

jLω
⇒ IL = |IL| =

U

Lω
et ψ = arg(iL) = arg(u)− arg(jLω) = ϕ− π

2 ,

d’où iL(t) = U

Lω
cos(ωt+ ϕ− π

2 ) = U

Lω
sin(ωt+ ϕ) .

Le déphasage de iL par rapport à u est ψ − ϕ = −π/2 < 0 . Ainsi iL est en retard de phase (en
quadrature) par rapport à u.

8. À la résonance, x = xr = (ou encore ω = ω0) :

iL(t) = RI

Lω0
cos(ω0t− π/2) = RI

Lω0
sin(ω0t) d’où iL(t) = QI sin(ω0t) .

9. Puissance moyenne reçue par la résistance :

PR =
〈
u2(t)
R

〉
= U2

R

〈
cos2(ωt+ ϕ)

〉
d’où PR = U2

2R .
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10. Cette puissance moyenne est maximale lorsque U est maximale donc pour ω = ω0 (x = 1), ce qui conduit
à

PRmax = RI2

2 = RI2
eff .

Interprétaion : Pour cette pulsation ω = ω0 = 1√
LC

(uniquement) l’admittance totale se réduit à la
conductance :

1
R

+ jω0C + 1
jω0L

= 1
R

donc cela implique que le courant total circule dans la résistance (i = iR), car les deux courant iC et iL
(qui ne sont pas nuls), sont parfaitement opposés. Ainsi nécessairement IR eff = Ieff .

11.
PR(x1,2) = PRmax

2 ⇔ RI2

2(1 +Q2(x1,2 − 1/x1,2)2) = RI2

4 ⇔ Q2(x1,2 − 1/x1,2)2 = 1

⇒ (x1,2 − 1/x1,2) = ± 1
Q

⇔ x2
1,2 ∓

x1,2
Q
− 1 = 0 ⇒ x1,2 = ∓ 1

2Q + 1
2Q

√
1 + 4Q2

en choisissant les deux seules racines positives. Par conséquent ∆x = x2 − x1 = 1
Q

. Le facteur de

qualité est égal à l’acuité de la résonance en puissance du circuit bouchon.

III. Détermination d’une installation inductive
Ô La puissance moyenne reçue par l’installation s’écrit

P = 〈u(t)i(t)〉 =
√

2Ueff
√

2Ieff 〈cos(ωt+ ϕ) cos(ωt)〉 = UeffIeff 〈cos(2ωt+ ϕ) + cos(ϕ)〉 = UeffIeff(0 + cos(ϕ))

d’où P = UeffIeff cos(ϕ) .
Ô L’impédance équivalente est Z = R+ jωL. Les données de l’énoncé permettent d’écrire

|Z|2 = R2 + L2ω2 = U2
eff
I2

eff

et comme
cos(ϕ) = R√

R2 + L2ω2
= R

|Z|
= RIeff

Ueff

on en déduit
P = RI2

eff .

Cette équation exprime que toute la puissance moyenne reçue est totalement consommée par la résistance,
par dissipation par effet Joule, car en moyenne la puissance reçue par une inductance en RSF est nulle. On
en déduit

R = P
I2

eff
= 1, 9 Ω

puis en revenant à la première équation,

Lω =
√
U2

eff
I2

eff
−R2 d’où L = 1

2πfIeff

√
U2

eff −
P2

I2
eff

= 6, 4 mH .
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IV. Hacheur de Buck

IV.1. Étude temporelle du circuit

1. RC = 10 s et L/R = 10−5 s. On a donc bien RC � L/R

2.
vS(t) est la tension aux bornes d’un condensateur, elle varie
donc de façon continue. De plus, iL(t) traverse une bobine donc
varie aussi continûment. On a dvS

dt = iC
C avec iC l’intensité

circulant en convention récepteur dans le condensateur. De la
loi des nœuds iC = iL − iR = iL − vS

R , il vient que :

dvS
dt

= iL
C
− vS
RC

.

Il s’agit d’une somme de fonctions continues, donc dvS
dt varie de façon continue.

a. Etude de la phase A

3. La loi des mailles s’écrit (uL est la tension aux bornes de la bobine en convention récepteur) :

E = uL + vS = L
diL
dt

+ vS .

En injectant la relation iL = C dvS
dt + vS

R établie à la question précédente on obtient

E = LC
d2vS
dt2

+ L

R

dvS
dt

+ vS ⇔ d2vS(t)
dt2 + ω0

Q

dvS(t)
dt + ω2

0 vS(t) = ω2
0 E

avec
{ 1
RC = ω0

Q
1
LC = ω2

0
d’où

ω0 = 1√
LC

Q = RCω0 = R
√

C
L

.

4. On cherche une solution particulière constante, il vient : vS,P (t) = E.
On note ensuite que la condition sur C correspond en fait à

RC � L

R
⇔ R2C

L
� 1 ⇔ Q2 � 1 ⇔ Q� 1 .

Les valeurs numériques proposées donnent Q = 103. L’équation caractéristique est de discriminent ∆ =
ω2

0
Q2 −4ω2

0 = 4ω2
0

(
1

4Q2 − 1
)
. Or Q� 1 > 1

2 donc ∆ < 0 et le régime est pseudo-périodique. Les racines

s’écrivent sous la forme 1
τ ± jω avec τ = 2Q

ω0
et ω = ω0

√
1− 1

4Q2 . La solution générale de l’équation

complète prend alors la forme

vS(t) = e−
t
τ (A cos(ωt) +B sin(ωt)) + E avec (A,B) ∈ R2 .

5. vS et sa dérivée sont continues, donc leurs valeurs à t = 0 sont :{
A+ E = U0

−A/τ +Bω = 0
⇔

{
A = U0 − E
B = U0−E

τω

d’où vS(t) = (U0 − E) e−
t
τ

(
cos(ωt) + 1

τω
sin(ωt)

)
+ E .

6. Puisque Q� 1, on a en fait ω ≈ ω0 et τω ≈ τω0 = 2Q� 1, d’où 1
τω � 1. Finalement on peut en déduire

que tant que cos(ωt) n’est pas trop proche de son annulation, c’est-à-dire pour ωt ≈ ω0t� 1, alors

vS(t) ≈ (U0 − E) e−
t
τ cos(ω0t) + E .

5

PCSI 1 - Stanislas DS de PHYSIQUE N◦3 - 19/11/22 - CORRIGÉ A. MARTIN

Pour Tω0 � 1, l’expression ci-dessus sera non seulement valable tout au long de la phase A mais en plus
on a alors cos(ω0t) ≈ 1. D’autre part le facteur exponentiel vérifie aussi e−

t
τ ≈ 1 puisque

t

τ
<
T

τ
= Tω0
ω0τ

= Tω0
2Q � 1

puisque Tω0 � 1 et Q � 1. Finalement on a donc vS(t) ≈ (U0 − E) + E ≈ U0 pour tout t inférieur à
αT , soit sur toute la phase A. On peut donc considérer vS constante.

b. Etude de la phase B

7. Par analogie avec la partie précédente (il suffit de prendre E = 0), il vient immédiatement que l’équation
différentielle est :

d2vS(t)
dt2 + ω0

Q

dvS(t)
dt + ω2

0 vS(t) = 0 ,

où l’on peut remplacer t par t′ = t− αT puisque les coefficients de l’équation sont constants.
La solution est donc de la forme :

vS(t′) = e−
t′
τ
(
A′ cos(ωt′) +B′ sin(ωt′)

)
avec (A′, B′) ∈ R2 .

Les conditions initiales sont les mêmes que pour la phase A, mais pour t′ = 0 donc t = αT . On obtient
donc les mêmes expressions qu’en phase A en remplaçant t par t′ et E par 0 :

vS(t) = U0 e
− t−αT

τ

(
cos(ω(t− αT )) + 1

τω
sin(ω(t− αT ))

)
.

8. Les conditions d’approximation Q � 1 et ω0t
′ � 1 étant toujours valables, on approxime par les mêmes

arguments qu’en 6. :

ω ≈ ω0 , τω � 1 et t

τ
� 1 d’où vS(t) ≈ U0 cos(ω0(t− αT )) e−

t−αT
τ ≈ U0 × 1× 1 = U0

La tension sera bien constante sur l’ensemble de la période T .

IV.2. Etude fréquentielle

a. Etude fréquentielle

9. La loi des mailles s’écrit : vE = jLωiL + vS . De iL = jCωvS + vS
R , il vient :

vE = (−LCω2 + j
L

R
ω + 1) vS d’où vS(t) = A0

1− ( ωω0
)2 + j ω

Qω0

Eme
jωt avec


1
ω2

0
= LC

1
Qω0

= L
R

Il vient : ω0 = 1√
LC

, Q = R

√
C

L
et A0 = 1 .

Remarque : La loi du pont diviseur de tension aurait donné directement, après association des deux
admittances en dérivation :

vE =
vS

1 + jωL
(

1
R + jωC

) d’où le même résultat .

Remarque : On pouvait aussi utiliser l’équation différentielle trouvée en 3. et la passer en complexe
sous l’hypothèse d’un régime sinusoïdal forcé de pulsation ω.

10. En utilisant l’expression précédente on approxime ainsi :
• à basse fréquence (BF) c’est-à-dire ω

ω0
= f

f0
� 1 : vS ≈ e donc vS,BF ≈ e(t) ;
6
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• à haute fréquence (HF) c’est-à-dire ω
ω0

= f
f0
� 1 : vS ∼ −

e
ω2/ω2

0
−→
ω
ω0
→∞

0 donc vS,BF ≈ 0 .

11. On obtient vS(t) = VSm cos(ωt+ φ) avec

VSm = |vS | =
Em√(

1−
(
ω
ω0

)2
)2

+ ω2

Q2ω2
0

et

φ = − arg
(

1−
(
ω

ω0

)2
+ j

ω

Qω0

)
= − arg

(
j
ω

Qω0

)
−arg

(
Qω0
jω
− Qω

jω0
+ 1

)
= −π2−arg

(
1 + jQ

(
ω

ω0
− ω0

ω

))

d’où φ = −π/2− arctan
(
Q

(
ω

ω0
− ω0

ω

))
.

Remarque : On a factorisé par la partie imaginaire pour obtenir une unique expression. Sinon il faut
une disjonction de cas selon que ω

ω0
< 1 ou > 1.

b. Détermination de la tension de sortie

12. a0 est la valeur moyenne de vE(t). Par définition :

a0 = 1
T

ˆ T

0
vE(t) dt = 1

T

ˆ αT

0
Edt = αTE

T
d’où a0 = αE .

13. On applique le théorème de superposition sachant que le filtre est linéaire :

vS(t) = a0 +
n=+∞∑
n=1

an√(
1− (2n−1)2ω2

ω2
0

)2
+ (2n−1)2ω2

Q2ω2
0

cos ((2n− 1)ωt+ φ((2n− 1)ω))

avec φ((2n− 1)ω) = −π/2− arctan
(
Q

((2n− 1)ω
ω0

− ω0
(2n− 1)ω

))
.

14. Le signal d’entrée a donc pour pulsation ω = 2π
T � ω0 pour son mode fondamental. Donc toutes les

harmoniques vérifient (2n+1)ω
ω0

� 1 et peuvent être assimilées à des hautes fréquences du point-de-vue
de la question 10.. Ainsi, seule subsiste la composante continue dans le signal de sortie, qui est à basse
fréquence donc d’après 10. vérifie vS(t) ≈ a0 = αE .

c. Intérêt du hacheur

15. Pour un condensateur, on a en convention récepteur la puissance moyenne reçue

PC = 〈vSiC〉 =
〈
CvS

dvS
dt

〉
=
〈dEe

dt

〉
avec Ee = 1

2Cv
2
S .

Ainsi 〈PC〉 = 1
T

ˆ T

0

dEe
dt dt = 1

T
[Ee(t)]T0 = 1

T
(Ee(T )− Ee(0)) d’où PC = 0

car Ee(t) est T -périodique (et même T
2 -périodique). Par un raisonnement analogue on a pour une induc-

tance en convention récepteur

PL =
〈dEm

dt

〉
avec Em = 1

2Li
2
L d’où PL = 0 .
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16. On note le bilan en puissance instantanée comme suit, en utilisant la loi des mailles et la loi des nœuds :

PE = iL

(
L

diL
dt + vS

)
= PL + iCv + iRv = PL + PC + PR

où PE est la puissance instantanée cédée par la source idéale E en amont du circuit et les termes suivant
les puissances instantanées reçues respectivement par l’inductance, la capacité et la résistance. En prenant
la valeur moyenne de ce bilan on obtient PE = PR , c’est-à-dire qu’en moyenne, toute la puissance
cédée par le générateur est dissipée par effet Joule dans la résistance.

17. Il s’agit d’un pont diviseur de tension, donc

vS = R

R1 +R
E = E

1 + R1
R

donc vS = αE ⇔ 1
1 + R1

R

= α ⇔ R1
R

= 1
α
− 1 .

18. Le pont étant assimilable à une seule résistance R+R1, on a

PE = E2

(R+R1) et PR = v2
S

R
= 1(

1 + R1
R

)2
E2

R
d’où η = PR

PE
= 1

1 + R1
R

= α < 1 .

Comme PR < PE , la charge R ne récupère pas toute l’énergie fournie avec ce simple pont diviseur de
tension.Alors qu’avec un hacheur, on obtient des rendements proches de 1 d’après la question
précédente.
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