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ONDES ET MÉCANIQUE
Soignez la présentation et la rédaction, qui doit être complète et concise. Tout résultat doit être justifié, et
mis en valeur. Les résultats doivent d’abord être écrits sous forme littérale et doivent être homogènes. Les ré-
sultats numériques doivent avoir un nombre de chiffres significatifs vraisemblable. Les schémas doivent être clairs,
suffisamment grands et lisibles. Si vous n’arrivez pas à montrer un résultat, admettez-le clairement et poursuivez.

CALCULATRICES AUTORISÉES

I. Détection d’étoiles doubles par interférométrie
On utilise une lunette astronomique que l’on pointe
vers un couple de deux étoiles très voisines E1 et E2,
supposées ponctuelles et à l’infini. Elles émettent
chacune une même lumière monochromatique de
longueur d’onde λ = 0, 6µm, et dont la célérité sera
assimilée à celle du vide : c = 3, 0 × 108 m.s−1. On
dispose la lunette de sorte que E1 et E2 soient sy-
métriques par rapport à son axe optique. En sortie
de la lunette, les faisceaux de rayons parallèles issus
de E1 et E2 forment des angles respectifs +ε > 0 et
−ε < 0 avec l’axe optique. Les étoiles étant voisines,
on a ε� 1.
Derrière l’oculaire de la lunette et dans un plan frontal, on place une feuille opaque percée de deux trous
d’Young S1 et S2 séparés d’une distance a. En raison de la diffraction, chaque trou se comporte comme
une nouvelle source lumineuse ponctuelle. On regarde l’éclairement au niveau d’un point M d’un écran
orthogonal à l’axe optique, placé à une distance D � a de la feuille.
Pour commencer, on suppose que la feuille est éclairée uniquement par l’étoile E1 (cas représenté sur le
schéma). On note s1(M, t) = A1 cos(ωt − kr1 + ϕ0 1) et s2(M, t) = A2 cos(ωt − kr2 + ϕ0 2) les signaux
lumineux émis par les trous S1 et S2. Ils ont la même pulsation mais leur retard de phase dépend des
distances parcourues respectives r1 = S1M et r2 = S2M . On note s(M, t) le signal résultant de leur
superposition.

1. Rappeler l’expression reliant k, ω et c puis celle reliant λ, c et f . Calculer la valeur numérique de
la fréquence des ondes lumineuses.

2. Grâce à une représentation de Fresnel, établir l’expression de l’amplitude A(M) du signal résultant
de la superposition en M de s1 et s2, en fonction de A1, A2 et du déphasage ∆ϕ(M) de s2 par
rapport à s1.

3. L’intensité lumineuse I(M) est proportionnelle à la moyenne temporelle de s2(M, t), ce que l’on
note : I(M) = 2β < s2(M, t) > où β est un coefficient constant. En supposant que les deux ondes
lumineuses issues de S1 et S2 ont la même intensité lumineuse I0, établir l’expression de l’intensité
I(M) en fonction de I0 et ∆ϕ(M).

4. Préciser l’expression de ∆ϕ(M) en fonction de la différence de marche δ(M) et de la longueur
d’onde λ. Puis expliciter δ(M) en fonction de r1, r2 et HS1.

5. On donne les coordonnées M(x, y,D), S1(a/2, 0, 0) et S2(−a/2, 0, 0). On suppose de plus que
D � x, y. Établir les expressions simplifiées de r1 et r2 en fonction de x, y, D et a, à l’aide d’un
développement limité.
Rappel : (1 +X)α ≈ 1 + αX lorsque X � 1.

6. On notera dorénavant l’intensité I(M) = I1(M) puisqu’elle est causée par l’étoile E1. Montrer que
finalement

I1(x) = 2I0

(
1 + cos

(2πa
λ

( xD − ε)
))

.
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7. Quelle est la position x0 du premier maximum de I1(x) ?
8. De même, établir les positions x+ et x− des deux premières annulations de l’intensité de part et

d’autre de x0. En déduire l’expression de l’interfrange i en fonction de a, λ et D.
9. Tracer l’allure de I1(x) sur trois interfranges.

On considère désormais les rayons issus des deux étoiles simultanément. Bien qu’elles soient synchrones,
les lumières issues des deux étoiles n’interfèrent pas entre elles car elles sont incohérentes, c’est-à-dire
constituées chacune de trains d’ondes mutuellement décorrélés 1. Par conséquent la figure d’interférence
observée sur l’écran est formée par l’addition des intensités I1(M) et I2(M) issues respectivement des
étoiles E1 et E2. On supposera enfin que l’intensité reçue de chaque étoile dans la lunette est la même.

10. En déduire l’expression de l’intensité I2(M) sur l’écran.
11. À l’aide d’une formule trigonométrique adaptée, exprimer l’intensité totale I(x) sous la forme d’une

somme d’un terme constant et d’un produit de deux fonctions sinusoïdales.
12. Déterminer la valeur maximale Imax et minimale Imin de l’intensité. En déduire l’expression du

contraste C = Imax−Imin
Imax+Imin

.
Montrer que le contraste s’annule pour certaines valeurs de a à expliciter (donc les franges d’inter-
férences se brouillent, l’écran devient uniformément éclairé). Interpréter ce résultat d’après 9..

13. La plus petite distance a entre S1 et S2 pour laquelle les franges disparaissent vaut amin = 71 mm.
En déduire la distance angulaire 2ε (en radians puis en secondes d’arc) entre les deux composantes
de l’étoile double. Pourrait-on l’observer à l’œil nu ?

II. Mouvement de Mars vu de la Terre : théorie des épicycles
Vue de la Terre, la trajectoire de la planète Mars fait apparaître des mouvements dits rétrogrades :
pendant un moment la planète semble reculer, avant de reprendre sa course en avant. Ces mouvements
rétrogrades contredisant l’hypothèse d’une trajectoire circulaire autour de la Terre, les philosophes grecs
eurent recours au modèle des épicycles pour les expliquer. On se propose ici d’adopter ce point de vue
antique. On raisonne donc dans le référentiel géocentrique RG = (T, ~ux, ~uy, ~uz). On néglige la rotation
propre de la Terre, ce qui est possible à condition d’observer Mars chaque jour à la même heure.
On modélise donc la trajectoire de Mars, supposée plane, ainsi :
— un point D tourne à la vitesse angulaire constante ωD sur

un cercle, appelé cercle déférent, de rayon RD et centré
sur le centre de la Terre au point T .

— la planète Mars, assimilable à un point matériel M ,
tourne à la vitesse angulaire constante ωE sur un cercle
de rayon RE (< RD) et de centre D, appelé épicycle.

La base polaire (−→ur;−→uθ) est définie à partir du mouvement du

point D, avec l’angle θ = ̂(−→ux,
−−→
TD), comme indiqué sur la figure

ci-contre. Quant au mouvement deM , il est repéré dans la base
polaire par l’angle φ = ̂(−→ur,

−−→
DM). A l’instant initial t = 0, on

considère que les points T , D et M sont confondus le long
de l’axe (Tx). On donne la période de rotation du point D :
TD = 431 jours.

uθ

ur
φ

θ
x

y

M

T

D

1. Exprimer les vecteurs −−→TD puis −−→TM dans la base polaire, en fonction du temps t, et de ωE , RD et
RE . En déduire l’expression de −−→TM dans la base cartésienne (−→ux;−→uy).

2. Des mesures ont permis d’établir que la distance Mars-Terre variait entre d1 = 5, 6.1010 km et
d2 = 4, 0.1011 km. En déduire l’expression des deux rayons RE et RD en fonction des distances d1
et d2, puis leur valeur numérique.

1. cf programme de SPE.
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En première approximation, on peut considérer que la trajectoire de la planète Mars est périodique de
période minimale TM = α 2π

ωD
, avec α = 67. Cela signifie que le point D a réalisé 67 tours avant que Mars

ne reviennent à sa position initiale.
3. En déduire qu’il existe un entier n non divisible par α, tel que ωE = n

α ωD. Que signifie n ?
4. Exprimer la vitesse de Mars dans RG dans la base polaire.
5. Montrer que Mars ne peut posséder un mouvement rétrograde de temps en temps que si n > k α

avec k une constante qu’on exprimera en fonction de RD et RE . En déduire les valeurs possibles
pour n.

6. En réalité, on observe que Mars rétrograde 24 fois durant la période TM . En déduire la valeur de
n. Est-ce compatible avec la condition exprimée à la question 5. ?

7. Exprimer la durée ∆t du phénomène de rétrogradation en fonction de TD, RD, RE , α et n. Faire
l’application numérique. En pratique, on trouve une moyenne de 75 jours. Commenter.

8. a) Exprimer l’accélération de Mars dans RG dans la base polaire. En déduire l’expression de sa
norme en fonction de RD, RE , TD, n, α et t.

b) Pour quels instants tM l’accélération sera-t-elle maximale ? Donner alors son expression litté-
rale, puis sa valeur numérique. Représenter les vecteurs accélération et vitesse de Mars à ces
instants. Est-on dans une phase où Mars « avance » ou « recule » ?

c) Pour quels instants tm l’accélération sera-t-elle minimale ? Donner alors son expression litté-
rale, puis sa valeur numérique. Représenter les vecteurs accélération et vitesse de Mars à ces
instants. Est-on dans une phase où Mars « avance » ou « recule » ?

III. Modélisation de la nage des bactéries
Dans ce problème, nous allons nous intéresser à des bactéries dont les flagelles ont la forme d’une

hélice, comme par exemple Escherichia Coli. Après quelques rappels sur les écoulements visqueux, nous
allons montrer que la rotation des flagelles, permet la propulsion des bactéries.

Données numériques typiques d’une bactérie Escherichia Coli :
— Rayon du corps : R = 1µm
— Longueur des flagelles : `f = 10µm
— Rayon de l’hélice : a = 0, 2µm
— Pas de l’hélice : Λ = 2πh avec h = 0, 1µm
— Vitesse de rotation des flagelles : Ω = 7× 102 rad.s−1

Autres données numériques :
— Accélération de la pesanteur :

g = 10 m.s−2

— Viscosité de l’eau à 25◦C : η =
10−3 Pa.s

— Masse volumique de l’eau à
25◦C : ρ = 103 kg.m−3

III.1. Sédimentation d’une bille dans un écoulement à bas nombre de Reynolds
Dans cette partie, nous nous intéressons au mouvement d’une bille sphérique sous l’effet de la pe-

santeur, de rayon r0 et de masse volumique ρ0, dans un liquide de viscosité dynamique η et de masse
volumique ρ uniforme (ρ ≤ ρ0).
Nous notons ~g = −g ~ez l’accélération de la pesanteur. Au cours
de sa chute, la bille subit une force de la part du fluide, mo-
délisée par la force de Stokes :

−→
F S = −6πηr0 ~V (1)

où ~V désigne la vitesse relative de la sphère par rapport au
fluide supposé au repos. Cette loi de Force n’est valable que
pour des valeurs suffisamment petites du nombre de Reynolds :

Re = 2r0V ρ

η
� 1 .

Figure 1 – Sédimentation d’une sphère
dans un fluide sous l’effet de son poids.
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La bille subit aussi la poussée d’Archimède. On rappelle 2 que pour un corps totalement immergé dans
un fluide au repos, la poussée d’Archimède est égale à l’opposé du poids du volume de fluide déplacé
par ce corps (en l’occurrence donc l’opposé du poids d’une bille de liquide sphérique de même taille). La
situation est représentée sur la Fig. (1). Pour rappel, le volume d’une boule de rayon r0 est 4

3πr
3
0.

1. En supposant que l’expression statique de la poussée d’Archimède reste applicable dans ces condi-
tions, expliciter les forces puis établir l’équation différentielle vérifiée par la vitesse −→V de la sphère.

2. En déduire l’évolution de la vitesse en fonction du temps t en supposant que la sphère est lâchée
sans vitesse initiale.
Montrer enfin que la sphère tombe dans la direction de la pesanteur et atteint une vitesse constante
V∞ (en norme) au bout d’un temps caractéristique τ . On exprimera V∞ et τ en fonction de r0, ρ,
ρ0, η et g.

3. Pour cette question uniquement, on considère la chute d’une bille de silice de rayon r0 = 1µm et
de masse volumique ρ0 = 2, 6 g.cm−3 chutant dans de l’eau. Déterminer la vitesse stationnaire de
chute ainsi que le temps typique après lequel elle est atteinte. Est-ce cohérent avec l’application de
la loi de Stokes ?

4. La masse volumique d’une bactérie est proche de celle de l’eau, de l’ordre de ρ0 = 1, 01g.cm−3.
On considère que l’on peut négliger les effets de la pesanteur lors d’une expérience si la bactérie a
sédimenté sur une hauteur faible par rapport à celle de la zone d’observation. Déterminer un ordre
de grandeur du temps d’observation au-delà duquel l’effet de la sédimentation devient observable
pour une étude dans une cellule de microscopie d’épaisseur ecell = 500µm.

III.2. Sédimentation d’un cylindre dans un écoulement à bas nombre de Reynolds
Afin de modéliser le mouvement d’un flagelle dans un fluide visqueux, il est nécessaire d’étudier

préalablement l’action du fluide sur ce flagelle. Pour ce faire, nous allons tout d’abord étudier la force
exercée par le fluide sur un cylindre soumis à une force extérieure −→F ext. Contrairement au cas de la
sphère étudié dans la partie III.1, la vitesse du cylindre n’est pas nécessairement colinéaire à la force
extérieure. Pour fixer les idées, on pourra imaginer que cette force extérieure correspond à l’action de la
pesanteur (incluant le terme de poussée d’Archimède), mais les résultats obtenus seront généraux.

Considérons un cylindre de masse M uniformément répartie, de masse volumique ρ0, de longueur ` et de
rayon R0 � `, chutant dans un fluide de viscosité dynamique η et de masse volumique ρ uniforme (ρ ≤
ρ0). Nous désignons par G son centre d’inertie, et introduisons un repère orthonormé direct (GXY Z),
représenté sur la Fig. (2(a)), et la base (~eX , ~eY , ~eZ) qui lui est associée. (GZ) désigne l’axe du cylindre
et (GXY ) correspond au plan médian du cylindre, orthogonal à l’axe principal. On choisira l’axe (GX)
de sorte que la force extérieure −→F ext appartienne au plan (GXZ).

Figure 2 – (a) Repère (GXY Z) associé au cylindre de hauteur ` et de rayon R0. (b) Sédimentation
d’un cylindre d’axe orienté par le vecteur unitaire ~eZ soumis à une force extérieure −→F ext.

2. cf programme de SUP 2ème semestre.
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Lorsque le cylindre est en chute dans le fluide, nous définissons −→V la vitesse du centre d’inertie G par
rapport au référentiel du laboratoire R = (Ox′y′z′), orienté de sorte que −→F ext = −Fext ~ez′ avec Fext > 0,
convention intuitive dans le cas où la force extérieure est liée à la pesanteur. Soient alors α l’angle formé
par la vitesse du cylindre −→V et son axe ~eZ , et ψ l’angle formé par la pesanteur ~g et l’axe ~eZ du cylindre.
La situation est représentée sur la Fig. (2(b)).

À bas nombre de Reynolds, on admet que la force visqueuse −→F v exercée par le fluide sur le cylindre reste
en relation linéaire avec son vecteur vitesse −→V , mais elle ne lui est plus parallèle :

−→
F v = −λ

(
2−→V − (−→V .~eZ)~eZ

)
avec λ = 4πη` . (2)

5. Donner une interprétation physique de cette expression, en comparaison avec le cas de la sphère
vu précédemment.

Dans toute la suite nous considérons que le cylindre est soumis à une force extérieure −→F ext constante et
nous supposons que l’angle ψ reste constant.

6. Établir le système d’équations différentielles vérifié par les composantes VX , VY et VZ de la vitesse
~V du cylindre par rapport au référentiel du laboratoire R.

7. Déterminer l’angle α que forme la vitesse de sédimentation avec l’axe (GZ) du cylindre en régime
stationnaire établi, en fonction de ψ.
Déterminer dans quel(s) cas particulier(s) le cylindre chute dans la direction de la force extérieure.

III.3. Propulsion d’une bactérie
Afin de simplifier la discussion, nous considérons ici que la bactérie possède un unique flagelle, et

qu’elle n’est soumise à aucune force extérieure (−→F ext = ~0). Le flagelle a approximativement la forme
d’une hélice de pas Λ > 0, de rayon a et de longueur projetée `f selon l’axe z. Nous notons F le point
correspondant à l’extrémité libre du flagelle, et nous introduisons la direction ~ez de son axe. Le flagelle
est mis en rotation autour de son axe à une vitesse angulaire −→Ω = Ω~ez par un moteur moléculaire. La
situation est représentée sur la Fig. (3).

Figure 3 – Représentation d’une bactérie pourvue d’un flagelle unique d’extrémité F , mis en rotation
autour de son axe (Oz).

Nous supposons en outre pour simplifier les calculs que l’hélice est parfaite, et effectue un nombre entier
de tours, c’est-à-dire que sa longueur projetée est un multiple entier de son pas. Dans la base (~er, ~eθ, ~ez),
l’hélice est définie en coordonnées cylindriques par l’ensemble des points M tels que :

−−→
OM(θ) = ~r(θ) = a~er + hθ~ez .
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8. Rappeler ce qu’est le pas de l’hélice Λ, et justifier le lien existant entre Λ et la constante h.
9. Déterminer les bornes de variation de l’angle θ pour décrire la totalité de l’hélice (depuis l’extrémité

F du flagelle jusqu’à son point d’attache sur la membrane de la bactérie) en fonction des paramètres
utiles.

10. En supposant que le fluide reste immobile lors de la rotation de l’hélice (de façon imagée, l’hélice
« se visse » dans le fluide sans le mettre en mouvement), la vitesse de translation de la bactérie
selon l’axe du flagelle est alors directement reliée à la vitesse de rotation du flagelle. Exprimer, en
fonction de Λ et Ω, la vitesse Vmax de translation de la bactérie dans ce cas.
L’application d’une loi de type Stokes comme en III.1 et III.2 vous paraît-elle pertinente ?

Nous souhaitons maintenant caractériser le mouvement de l’hélice dans un fluide visqueux une fois le
régime stationnaire atteint, et pour une vitesse de rotation Ω fixée. Pour cela, nous allons calculer la
résultante −→F v des forces appliquées par le fluide à l’hélice lors de son mouvement.

Considérons un tronçon élémentaire de l’hélice délimité par les angles θ et θ+dθ (avec dθ > 0), représenté
dans l’agrandissement de la Fig. (3) et dont le centre est repéré par −−→OM(θ). Nous assimilons cet élément
à un cylindre de longueur d` = ||

−→
d`||, choisie grande devant son rayon, et d’axe orienté par le vecteur

unitaire ~u(θ). La loi de l’Eq. (2) appliquée à ce cylindre élémentaire de vitesse −→V (au point M) prend
alors la forme suivante,

d−→F v = −4πη d`
(
2−→V − (−→V .~u)~u

)
,

et la résultante s’obtient en intégrant sur tout le flagelle :

−→
F v =

ˆ
hélice

d−→F v .

11. En notant que le vecteur
−→
d` correspond au déplacement élémentaire d−−→OM(θ) le long de l’hélice,

exprimer la longueur d` en fonction de dθ, de a et h.Puis exprimer le vecteur directeur unitaire ~u
tangent à ce brin d’hélice dans la base cylindrique.

12. Sachant que le mouvement du flagelle combine une rotation autour de (Oz) à la vitesse angulaire
Ω et une translation selon l’axe (Oz) de vitesse V , exprimer le vecteur vitesse ~V du point M dans
la base cylindrique en fonction de Ω et V notamment.

13. En déduire l’expression de d−→F v sur la base cylindrique, puis intégrer pour établir l’expression de−→
F v en fonction de V , Ω, a et h. On montrera notamment que −→F v peut être décomposée sous la
forme −→

F v = (T + P )~ez
où T et P sont à identifier comme représentant respectivement un effet de traînée et un effet de
propulsion. On justifiera pas un argument de symétrie que −→F v est nécessairement dirigée selon ~ez.

14. Montrer que pour les dimensions d’une bactérie, la force de traînée T ~ez domine la force de Stokes−→
F S (cf Eq. (1)) qui s’exerce sur le corps sphérique de la bactérie se déplaçant à la même vitesse
de translation V .

15. En conséquence, on peut supposer que lorsque le régime stationnaire est atteint, l’effet de traînée
T ~ez compense parfaitement l’effet de propulsion P ~ez. En déduire que la vitesse de translation de
la bactérie vérifie alors

V = a2h

2a2 + h2 Ω .

16. Calculer la valeur de cette vitesse pour la bactérie considérée et commenter relativement au résultat
de la question 10.
Que dire de la vitesse de sédimentation évaluée à la question 4., négligée dans cette partie ?

* * * Fin de l’épreuve * * *
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