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ONDES ET MECANIQUE

Soignez la présentation et la rédaction, qui doit étre compléte et concise. Tout résultat doit étre justifié, et

mis en valeur. Les résultats doivent d’abord étre écrits sous forme littérale et doivent étre homogénes. Les ré-
sultats numériques doivent avoir un nombre de chiffres significatifs vraisemblable. Les schémas doivent étre clairs,
suffisamment grands et lisibles. Si vous n’arrivez pas a montrer un résultat, admettez-le clairement et poursuivez.

| CALCULATRICES AUTORISEES

I. Détection d’étoiles doubles par interférométrie

On utilise une lunette astronomique que I'on pointe
vers un couple de deux étoiles tres voisines F7 et Fo,
supposées ponctuelles et a l'infini. Elles émettent
chacune une méme lumiere monochromatique de H |
longueur d’onde A = 0, 6 um, et dont la célérité sera
assimilée & celle du vide : ¢ = 3,0 x 108 m.s~!. On
dispose la lunette de sorte que E; et E soient sy-
métriques par rapport a son axe optique. En sortie
de la lunette, les faisceaux de rayons paralléles issus —
de F et Es forment des angles respectifs +¢ > 0 et
—e < 0 avec I'axe optique. Les étoiles étant voisines,
onae<l.

Derriere 'oculaire de la lunette et dans un plan frontal, on place une feuille opaque percée de deux trous
d’Young 57 et So séparés d’une distance a. En raison de la diffraction, chaque trou se comporte comme
une nouvelle source lumineuse ponctuelle. On regarde I’éclairement au niveau d’un point M d’un écran
orthogonal & ’axe optique, placé & une distance D > a de la feuille.

ueIdg

Pour commencer, on suppose que la feuille est éclairée uniquement par ’étoile E; (cas représenté sur le
schéma). On note s1(M,t) = Ajcos(wt — kry + po1) et so(M,t) = Agcos(wt — kra + pp2) les signaux
lumineux émis par les trous S7 et So. Ils ont la méme pulsation mais leur retard de phase dépend des
distances parcourues respectives 1 = S1M et ro = SoM. On note s(M,t) le signal résultant de leur
superposition.

1. Rappeler 'expression reliant &k, w et ¢ puis celle reliant A, ¢ et f. Calculer la valeur numérique de
la fréquence des ondes lumineuses.

2. Gréace a une représentation de Fresnel, établir ’expression de 'amplitude A(M) du signal résultant
de la superposition en M de s; et s2, en fonction de Ay, Ay et du déphasage Ap(M) de sy par
rapport a sj.

3. L’intensité lumineuse I(M) est proportionnelle & la moyenne temporelle de s2(M,t), ce que I'on
note : [(M) =28 < s%(M,t) > ou 3 est un coefficient constant. En supposant que les deux ondes
lumineuses issues de Sp et S5 ont la méme intensité lumineuse Iy, établir 'expression de I'intensité
I(M) en fonction de Iy et Ap(M).

4. Préciser l'expression de Ap(M) en fonction de la différence de marche §(M) et de la longueur
d’onde A. Puis expliciter §(M) en fonction de 7y, ro et HSj.

5. On donne les coordonnées M (z,y, D), Si(a/2,0,0) et Sa(—a/2,0,0). On suppose de plus que
D > x,y. Etablir les expressions simplifiées de r1 et o en fonction de x, y, D et a, a 'aide d’un
développement limité.

Rappel : (1 4+ X)* =1+ aX lorsque X < 1.

6. On notera dorénavant l'intensité I(M) = I (M) puisqu’elle est causée par 'étoile E;. Montrer que

finalement

Li(x) =2y (1 + cos (27;1(% - 6))) .
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7. Quelle est la position z¢ du premier maximum de I;(x)?

8. De méme, établir les positions x4 et z_ des deux premieres annulations de l'intensité de part et
d’autre de xp. En déduire 'expression de 'interfrange ¢ en fonction de a, A et D.

9. Tracer l'allure de I;(z) sur trois interfranges.

On considere désormais les rayons issus des deux étoiles simultanément. Bien qu’elles soient synchrones,
les lumieres issues des deux étoiles n’interferent pas entre elles car elles sont incohérentes, c’est-a-dire
constituées chacune de trains d’ondes mutuellement décorrélés!. Par conséquent la figure d’interférence
observée sur 1’écran est formée par 'addition des intensités I1 (M) et Iy(M) issues respectivement des
étoiles Fq et E5. On supposera enfin que l'intensité recue de chaque étoile dans la lunette est la méme.

10. En déduire 'expression de l'intensité Io(M) sur I’écran.

11. A laide d’une formule trigonométrique adaptée, exprimer l'intensité totale I (z) sous la forme d’une
somme d’un terme constant et d’un produit de deux fonctions sinusoidales.

12. Déterminer la valeur maximale I, et minimale I, de I'intensité. En déduire ’expression du
contraste C' = {max—lmin
Imax+1min . \ o . :
Montrer que le contraste s’annule pour certaines valeurs de a a expliciter (donc les franges d’inter-

férences se brouillent, I’écran devient uniformément éclairé). Interpréter ce résultat d’apres 9..

13. La plus petite distance a entre S7 et Sy pour laquelle les franges disparaissent vaut api, = 71 mm.
En déduire la distance angulaire 2¢ (en radians puis en secondes d’arc) entre les deux composantes
de I’étoile double. Pourrait-on 1’observer a 1’ceil nu ?

Il. Mouvement de Mars vu de la Terre : théorie des épicycles

Vue de la Terre, la trajectoire de la planete Mars fait apparaitre des mouvements dits rétrogrades :
pendant un moment la planete semble reculer, avant de reprendre sa course en avant. Ces mouvements
rétrogrades contredisant I’hypothése d’une trajectoire circulaire autour de la Terre, les philosophes grecs
eurent recours au modele des épicycles pour les expliquer. On se propose ici d’adopter ce point de vue
antique. On raisonne donc dans le référentiel géocentrique Rg = (T, Uy, iy, U-.). On néglige la rotation
propre de la Terre, ce qui est possible & condition d’observer Mars chaque jour & la méme heure.

On modélise donc la trajectoire de Mars, supposée plane, ainsi :

— un point D tourne a la vitesse angulaire constante wp sur y
un cercle, appelé cercle déférent, de rayon Rp et centré Y
sur le centre de la Terre au point T'. Mo

— la planete Mars, assimilable a un point matériel M, ,
tourne a la vitesse angulaire constante wg sur un cercle . L D ;
de rayon Rp (< Rp) et de centre D, appelé épicycle. ;

: 0 |
La base polaire (177,) ; 175) est définie a partir du mouvement du l T t X
point D, avec 'angle 6 = (@, ﬁ), comme indiqué sur la figure
ci-contre. Quant au mouvement de M, il est repéré dans la base
—_— \\\ //
polaire par 'angle ¢ = (ur, DM). A l'instant initial ¢ = 0, on

considere que les points T', D et M sont confondus le long
de l'axe (T'z). On donne la période de rotation du point D :
Tp = 431 jours.

—

1. Exprimer les vecteurs ﬁ puis 7'M dans la base polaire, en fonction du temps ¢, et de wg, Rp et
Rg. En déduire Pexpression de TM dans la base cartésienne (iug; 27y)

2. Des mesures ont permis d’établir que la distance Mars-Terre variait entre d; = 5,6.10'%km et

dy = 4,0.10" km. En déduire I’expression des deux rayons Rg et Rp en fonction des distances d;
et do, puis leur valeur numérique.

1. cf programme de SPE.
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En premiere approximation, on peut considérer que la trajectoire de la planete Mars est périodique de

période minimale Ty = O‘%’ avec a = 67. Cela signifie que le point D a réalisé 67 tours avant que Mars

ne reviennent a sa position initiale.
3. En déduire qu’il existe un entier n non divisible par «, tel que wg = 7 wp. Que signifie n?
4. Exprimer la vitesse de Mars dans R dans la base polaire.

5. Montrer que Mars ne peut posséder un mouvement rétrograde de temps en temps que si n > k«
avec k une constante qu’on exprimera en fonction de Rp et Rg. En déduire les valeurs possibles
pour n.

6. En réalité, on observe que Mars rétrograde 24 fois durant la période Th;. En déduire la valeur de
n. Est-ce compatible avec la condition exprimée a la question 5.7

7. Exprimer la durée At du phénomeéne de rétrogradation en fonction de Tp, Rp, Rg, « et n. Faire
I’application numérique. En pratique, on trouve une moyenne de 75 jours. Commenter.

%

a) Exprimer l'accélération de Mars dans R dans la base polaire. En déduire I'expression de sa
norme en fonction de Rp, Rg, Tp, n, o et t.

b) Pour quels instants t5; I'accélération sera-t-elle maximale ? Donner alors son expression litté-
rale, puis sa valeur numérique. Représenter les vecteurs accélération et vitesse de Mars a ces
instants. Est-on dans une phase ou Mars « avance » ou « recule » 7

c) Pour quels instants ¢, 'accélération sera-t-elle minimale ? Donner alors son expression litté-
rale, puis sa valeur numérique. Représenter les vecteurs accélération et vitesse de Mars a ces
instants. Est-on dans une phase ou Mars « avance » ou « recule » 7

I1l. Modélisation de la nage des bactéries

Dans ce probléme, nous allons nous intéresser a des bactéries dont les flagelles ont la forme d’une
hélice, comme par exemple Escherichia Coli. Apres quelques rappels sur les écoulements visqueux, nous
allons montrer que la rotation des flagelles, permet la propulsion des bactéries.

Données numériques typiques d’une bactérie Escherichia Coli : Autres données numériques :

— Rayon du corps : R =1 um — Accélération2 de la pesanteur :
— Longueur des flagelles : £; = 10 ym g =10ms

Thélice - 1 — — Viscosité de l'eau a 25°C : n =
— Rayon de I’hélice : a = 0, 2um 1073 Pa.s

— Pas de I'hélice : A = 27h avec h = 0,1 ym — Masse volumique de leau A

— Vitesse de rotation des flagelles : Q = 7 x 10?rad.s~* 25°C : p = 103 kg.m 3

I1l.1. Sédimentation d’une bille dans un écoulement a bas nombre de Reynolds

Dans cette partie, nous nous intéressons au mouvement d’une bille sphérique sous 'effet de la pe-
santeur, de rayon rg et de masse volumique pg, dans un liquide de viscosité dynamique 1 et de masse
volumique p uniforme (p < po).

Nous notons § = —g €, ’accélération de la pesanteur. Au cours
de sa chute, la bille subit une force de la part du fluide, mo- 70
délisée par la force de Stokes : q
o !
?g = —6mnroV (1) “ y V}
on V désigne la vitesse relative de la spheére par rapport au ‘ — o

fluide supposé au repos. Cette loi de Force n’est valable que O
pour des valeurs suffisamment petites du nombre de Reynolds :

2roVp FIGURE 1 — Sédimentation d’une sphere

<1

Re = n ) dans un fluide sous l'effet de son poids.
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La bille subit aussi la poussée d’Archiméde. On rappelle? que pour un corps totalement immergé dans
un fluide au repos, la poussée d’Archimede est égale a 'opposé du poids du volume de fluide déplacé
par ce corps (en l'occurrence donc I'opposé du poids d’une bille de liquide sphérique de méme taille). La

situation est représentée sur la Fig. (1). Pour rappel, le volume d’une boule de rayon rq est %777“8 .

1. En supposant que 'expression statique de la poussée d’Archimede reste applicable dans ces condi-
tions, expliciter les forces puis établir 'équation différentielle vérifiée par la vitesse V' de la sphere.

2. En déduire I’évolution de la vitesse en fonction du temps ¢t en supposant que la sphere est lachée
sans vitesse initiale.

Montrer enfin que la sphére tombe dans la direction de la pesanteur et atteint une vitesse constante
Voo (en norme) au bout d’un temps caractéristique 7. On exprimera V4, et 7 en fonction de rg, p,
po, 1 et g.

3. Pour cette question uniquement, on considere la chute d’une bille de silice de rayon rg = 1 um et
de masse volumique py = 2,6 g.cm™> chutant dans de I’eau. Déterminer la vitesse stationnaire de
chute ainsi que le temps typique apres lequel elle est atteinte. Est-ce cohérent avec ’application de
la loi de Stokes?

3

4. La masse volumique d’une bactérie est proche de celle de 'eau, de 'ordre de pg = 1,01g.cm™°.
On considere que 'on peut négliger les effets de la pesanteur lors d’une expérience si la bactérie a
sédimenté sur une hauteur faible par rapport a celle de la zone d’observation. Déterminer un ordre
de grandeur du temps d’observation au-dela duquel l'effet de la sédimentation devient observable
pour une étude dans une cellule de microscopie d’épaisseur ece = 500 pm.

I11.2. Sédimentation d’un cylindre dans un écoulement a bas nombre de Reynolds

Afin de modéliser le mouvement d’un flagelle dans un fluide visqueux, il est nécessaire d’étudier
préalablement ’action du fluide sur ce flagelle. Pour ce faire, nous allons tout d’abord étudier la force
exercée par le fluide sur un cylindre soumis a une force extérieure ?ext. Contrairement au cas de la
sphére étudié dans la partie ITI.1, la vitesse du cylindre n’est pas nécessairement colinéaire a la force
extérieure. Pour fixer les idées, on pourra imaginer que cette force extérieure correspond a ’action de la
pesanteur (incluant le terme de poussée d’Archimede), mais les résultats obtenus seront généraux.

Considérons un cylindre de masse M uniformément répartie, de masse volumique pg, de longueur £ et de
rayon Ry < ¢, chutant dans un fluide de viscosité dynamique 7 et de masse volumique p uniforme (p <
po)- Nous désignons par G son centre d’inertie, et introduisons un repére orthonormé direct (GXY Z),
représenté sur la Fig. (2(a)), et la base (€x, €y, €z) qui lui est associée. (GZ) désigne 'axe du cylindre
et (GXY) correspond au plan médian du cylindre, orthogonal & ’axe principal. On choisira l'axe (GX)

de sorte que la force extérieure ?ext appartienne au plan (GX 7).

@

FIGURE 2 - (a) Repere (GXY Z) associé au cylindre de hauteur ¢ et de rayon Ry. (b) Sédimentation

d’un cylindre d’axe orienté par le vecteur unitaire €7 soumis a une force extérieure Feyt.

2. cf programme de SUP 2éme semestre.
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Lorsque le cylindre est en chute dans le fluide, nous définissons 7 la vitesse du centre d’inertie G par
rapport au référentiel du laboratoire R = (Oz'y’z’), orienté de sorte que ?ext = —Foxt € avec Foyy > 0,
convention intuitive dans le cas ou la force extérieure est liée a la pesanteur. Soient alors o ’angle formé
par la vitesse du cylindre 7 et son axe €z, et ¢ 'angle formé par la pesanteur g et 'axe €7 du cylindre.
La situation est représentée sur la Fig. (2(b)).

A bas nombre de Reynolds, on admet que la force visqueuse ?U exercée par le fluide sur le cylindre reste
en relation linéaire avec son vecteur vitesse V', mais elle ne lui est plus parallele :

?U =-A (27 - (7.52)52) avec A\ =d4mnl. (2)

5. Donner une interprétation physique de cette expression, en comparaison avec le cas de la sphere
vu précédemment.

Dans toute la suite nous considérons que le cylindre est soumis a une force extérieure ?ext constante et
nous supposons que l’angle ¢ reste constant.

6. Etablir le systeme d’équations différentielles vérifié par les composantes Vx, Vy et V7 de la vitesse
V' du cylindre par rapport au référentiel du laboratoire R.

7. Déterminer 'angle a que forme la vitesse de sédimentation avec I'axe (GZ) du cylindre en régime
stationnaire établi, en fonction de .
Déterminer dans quel(s) cas particulier(s) le cylindre chute dans la direction de la force extérieure.

111.3. Propulsion d’une bactérie

Afin de simplifier la discussion, nous considérons ici que la bactérie possede un unique flagelle, et
qu’elle n’est soumise & aucune force extérieure (?ext = 0). Le flagelle a approximativement la forme
d’une hélice de pas A > 0, de rayon a et de longueur projetée £; selon ’axe z. Nous notons F' le point
correspondant a I'extrémité libre du flagelle, et nous introduiso_)ns la direction €, de son axe. Le flagelle
est mis en rotation autour de son axe a une vitesse angulaire 2 = )€, par un moteur moléculaire. La

situation est représentée sur la Fig. (3).
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FIGURE 3 — Représentation d’une bactérie pourvue d’un flagelle unique d’extrémité F', mis en rotation
autour de son axe (Oz).

Nous supposons en outre pour simplifier les calculs que I’hélice est parfaite, et effectue un nombre entier
de tours, c’est-a-dire que sa longueur projetée est un multiple entier de son pas. Dans la base (€&, €y, €>),
I’hélice est définie en coordonnées cylindriques par I’ensemble des points M tels que :

OM (0) = 7(0) = aé, + h0é, .
5
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8. Rappeler ce qu’est le pas de I'hélice A, et justifier le lien existant entre A et la constante h.

9. Déterminer les bornes de variation de 'angle 6 pour décrire la totalité de I'hélice (depuis l'extrémité
F du flagelle jusqu’a son point d’attache sur la membrane de la bactérie) en fonction des parametres
utiles.

10. En supposant que le fluide reste immobile lors de la rotation de 1’hélice (de fagon imagée, I’hélice
« se visse » dans le fluide sans le mettre en mouvement), la vitesse de translation de la bactérie
selon I'axe du flagelle est alors directement reliée a la vitesse de rotation du flagelle. Exprimer, en
fonction de A et €, la vitesse Vinax de translation de la bactérie dans ce cas.

L’application d’une loi de type Stokes comme en II1.1 et I11.2 vous parait-elle pertinente ?

Nous souhaitons maintenant caractériser le mouvement de U’hélice dans un fluide visqueuz une fois le
régime stationnaire atteint, et pour une vitesse de rotation ) fixée. Pour cela, nous allons calculer la
résultante F',, des forces appliquées par le fluide a I’hélice lors de son mouvement.

Considérons un trongon élémentaire de I’hélice délimité par les angles 6 et 6+d6 (avec df > 0), représenté
dans lagrandissement de la Fig. (3) et dont le centre est repéré par OM (6). Nous assimilons cet élément
a un cylindre de longueur d¢ = ||d/||, choisie grande devant son rayon, et d’axe orienté par le vecteur
unitaire #(6). La loi de 'Eq. (2) appliquée a ce cylindre élémentaire de vitesse v (au point M) prend

alors la forme suivante,
AF, = —4myde (2V — (V.a)i) .

et la résultante s’obtient en intégrant sur tout le flagelle :

F,= dF, .

hélice

— |

11. En notant que le vecteur d¢ correspond au déplacement élémentaire dOM (6) le long de 1’hélice,
exprimer la longueur df en fonction de df, de a et h.Puis exprimer le vecteur directeur unitaire 4
tangent & ce brin d’hélice dans la base cylindrique.

12. Sachant que le mouvement du flagelle combine une rotation autour de (Oz) a la vitesse angulaire
Q et une translation selon 'axe (Oz) de vitesse V', exprimer le vecteur vitesse V' du point M dans
la base cylindrique en fonction de 2 et V notamment.

13. En déduire ’expression de d?v sur la base cylindrique, puis int%grer pour établir 'expression de
» en fonction de V', , a et h. On montrera notamment que F', peut étre décomposée sous la

forme

Fo=(T+P)e,

ou T et P sont a identifier comme représentant respectivement un effet de trainée et un effet de
propulsion. On justifiera pas un argument de symétrie que F', est nécessairement dirigée selon €.

14. Montrer que pour les dimensions d’une bactérie, la force de trainée T' €, domine la force de Stokes
s (cf Eq. (1)) qui s’exerce sur le corps sphérique de la bactérie se déplacant a la méme vitesse
de translation V.

15. En conséquence, on peut supposer que lorsque le régime stationnaire est atteint, ’effet de trainée
T €, compense parfaitement 'effet de propulsion P €,. En déduire que la vitesse de translation de
la bactérie vérifie alors

2K
Vet
2a2 + h?

16. Calculer la valeur de cette vitesse pour la bactérie considérée et commenter relativement au résultat
de la question 10.
Que dire de la vitesse de sédimentation évaluée a la question 4., négligée dans cette partie ?

Q.

* * * PIN DE L’EPREUVE * * *



