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ONDES ET MÉCANIQUE

I. Détection d’étoiles doubles par interférométrie (d’après Mines 2004 et CCP MP 2008)

1. Pour un milieu non dispersif et non absorbant, la relation de dispersion s’écrit

k = ω

c
⇔ 2π

λ
= 2πf

c
⇒ f = c

λ
= 5× 1014 Hz .

2. Le théorème d’Al Kashi conduit à

A(M) =
√
A2

1 +A2
2 + 2A1A2 cos(∆ϕ(M)) .

3. Les deux ondes ont la même intensité donc

I0 = 2β < s2
1(M, t) >= 2βA2

1 < cos2(ωt− kr1 + ϕ0 1) >= βA2
1 et I0 = βA2

2 .

Ainsi
I(M) = βA2(M) d’où I(M) = 2I0 (1 + cos(∆ϕ)) .

4. On a ∆ϕ = −k(r2 − r1) + ϕ0 2 − ϕ0 1 et le déphasage des sources entre elles est du à la différence de
distance parcourue avant les trous : ϕ0 2 − ϕ0 1 = kHS1. Ainsi, par définition

∆ϕ = −2π
λ
δ(M) d’où δ(M) = r2 − r1 −HS1 .

5.

r1 = S1M =
√

(x− a/2)2 + y2 +D2 = D

1− ax
D2 + x2 + y2 + a2/4

D2︸ ︷︷ ︸
X�1


1
2

≈ D
(

1− ax

2D2 + x2 + y2 + a2/4
2D2

)

d’où r1 ≈ D −
ax

2D + x2 + y2 + a2/4
2D

en se limitant à l’ordre 2 dans l’approximation. De même on obtiendra r2 ≈ D + ax

2D + x2 + y2 + a2/4
2D .

6. On note que l’angle ε se reporte dans le triangle rectangle HS1S2 de telle sorte que ε = ̂(−−→S2S1,
−−→
S2H), ce

qui permet d’écrire
HS1 = a sin ε ≈ aε ,

relation algébrique qui sera utilisable aussi si ε < 0. En réunissant les résultats des 3 précédentes questions
on obtient finalement

δ(M) = ax

D
− aε d’où I1(x) = 2I0

(
1 + cos

(2πa
λ

( xD − ε)
))

.

7. Le premier maximum est obtenu pour

cos
(2πa

λ
(x0
D − ε)

)
= 1 ⇒ x0

D
− ε = 0 ⇔ x0 = D ε .
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8. Les deux premières franges sombres sont localisées respectivement en x− et x+ telles que

cos
(2πa

λ
(x±
D
− ε)

)
= −1 ⇒ 2πa

λ

(
x±
D
− ε
)

= ±π ⇔ x± = D

(
± λ

2a + ε

)
.

On en déduit l’interfrange, qui est l’espacement entre 2 franges sombres (ou brillantes) consécutives :

i = x+ − x− = λD

a
.

9.

x

I1(x)

0

4I0

x+x− x0

i

10. La seconde étoile donne la même forme d’intensité à condition de remplacer ε par −ε :

I2(x) = 2I0

(
1 + cos

(2πa
λ

( xD + ε)
))

.

11. En utilisant cos p+ cos q = 2 cos
(
p−q

2

)
cos

(
p+q

2

)
, on obtient :

I(x) = I1(x) + I2(x) = 4I0

(
1 + cos

(2πaε
λ

)
cos

(2πax
λD

))
.

12. On en déduit

Imin = 4I0

(
1−

∣∣∣∣cos
(2πaε

λ

)∣∣∣∣ ) et Imax = 4I0

(
1 +

∣∣∣∣cos
(2πaε

λ

)∣∣∣∣ ) d’où C =
∣∣∣∣cos

(2πaε
λ

)∣∣∣∣ ∈ [0; 1] .

Le contraste est donc nul si

cos
(2πaε

λ

)
= 0 ⇔ ∃n ∈ N,

2πanε
λ

= π

2 + nπ ⇔ an = (1
2 + n) λ2ε .

Ce résultat peut se comprendre d’après la figure représentée en 9. : la première frange brillante de I1 est en
x0 = Dε alors que celle de I2 sera en −x0 = −Dε. Or l’interfrange i = λD

a , qui est le même pour I1 et I2,
diminue lorsque a augmente. Donc il y aura brouillage des franges si les franges brillantes de I1 coïncident
avec des franges sombres de I2, c’est-à-dire si le décalage 2x0 correspond à un nombre demi-entier de fois
l’interfrange :

2x0 = (1
2 + n)i ⇔ 2Dε = (1

2 + n) λD
an

⇔ an = (1
2 + n) λ2ε .

13. On a donc pour n = 0 :

a0 = amin = λ

4ε ⇔ 2ε = λ

2amin
≈ 4× 10−6 rad ≈ 1′′ .

Le pouvoir séparateur de l’œil étant de l’ordre de qq 10−4 rad (quelques dixièmes de mm discerné à 1 m
de distance), on accède ici à une distance indiscernable à l’œil nu grâce à la mesure de amin
donnant lieu au premier brouillage.
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II. Mouvement de Mars vu de la Terre : théorie des épicycles
1. Les vitesses angulaires étant constantes, d’après les conditions initiales on peut écrire : θ = ωDt et φ = ωEt.

Or −−→TM = −−→TD +−−→DM avec

−−→
TD = RD~ur et −−→

DM = RE(cosφ~ur+sinφ~uθ) d’où −−→
TM = (RD +RE cos(ωEt)) ~ur +RE sin(ωEt) ~uθ .

Or ~ur = cos θ ~ux + sin θ ~uy et ~uθ = − sin θ ~ux + cos θ ~uy, donc après regroupement des termes on obtient

−−→
TM = (RD cos(ωDt) +RE cos((ωD + ωE)t)) ~ux + (RD sin(ωDt) +RE sin((ωD + ωE)t)) ~uy .

Reamrque : Cette relation peut être obtenue sans passer par la base polaire, directement en remarquant
que ̂(~ux,

−−→
DM) = θ + φ.

2. Dans les situations où les trois points sont alignés, on a d1 = RD −RE et d2 = RD +RE d’où

RD = 1
2(d1 + d2) = 2, 3× 1011 km et RE = 1

2(d2 − d1) = 1, 7× 1011 km .

3. Notons TD = 2π
ωD

la période du mouvement de D (durée d’un tour autour de T ), et TE = 2π
ωE

la période du
mouvement de E (durée d’un tour autour de D). Par définition de TM , au bout d’une durée TM = 67TD,
le M retrouve sa position initiale. Pendant cette durée le point D a effectué 67 tours donc il retrouve
aussi sa position initiale. Par conséquent les points T,D,M sont de nouveau alignés et M a donc aussi
effectué nombre entier n ∈ N∗ de tours autour de D. On a donc

TM = αTD et TM = nTE d’où α
2π
ωD

= n
2π
ωE

⇔ ωE = n

α
ωD .

Supposons que n = pα avec p ∈ N∗, on aurait alors TD = pTE donc les 3 points seraient de nouveau
alignés au bout d’une durée TD donc TD = TM , ce qui est absurde. Donc n n’est pas un multiple de
α.

4. Dans la suite on note simplement ~vM/RG = ~v la vitesse de M dans RG. On reprend l’expression de la
position en polaires trouvée en 1. :

~v = d−−→TM
dt

∣∣∣∣∣
RG

avec d~ur
dt

∣∣∣∣
RG

= ωD ~uθ et d~uθ
dt

∣∣∣∣
RG

= −ωD ~ur d’où

~v = −RE(ωD + ωE) sin(ωEt) ~ur + (RDωD +RE(ωD + ωE) cos(ωEt)) ~uθ

après regroupement des termes.
5. L’existence d’un mouvement rétrograde se traduit par une vitesse orthoradiale négative :

~uθ.~v < 0 ⇔ RDωD +RE(ωD + ωE) cos(ωEt) < 0 ⇒ RDωD −RE(ωD + ωE) < 0

⇔ ωD+ωE >
RD
RE

ωD ⇔ ωE
ωD

>
RD
RE
−1 ⇒ n

α
>
RD
RE
−1 ⇔ n > αk avec k = RD

RE
− 1 .

On trouve alors n ≥ 22 avec n /∈ αN.
6. Si la condition de rétrogradation est satisfaite, il existe un mouvement rétrograde à chaque tour

de M autour de D, pendant la phase où M est entre T et D. Donc n = 24, ce qui est cohérent avec la
condition précédente.

7. La vitesse de rétrogradation est maximale (minimale en valeur algébrique) à l’instant tm, lorsque T , M ,
et D sont alignés dans cet ordre. On a alors

~uθ.~v = RDωD −RE(ωD + ωE) < 0 car cos(ωEtm) = −1 .
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Par parité du cos, la durée de rétrogradation ∆t est partagée équitablement entre avant et après cet
extremum. On a donc au début de la rétrogradation une vitesse orthoradiale nulle à l’instant t0 = tm−∆t

2 :

~uθ.~v = 0 = RDωD +RE(ωD + ωE) cos(ωE(tm −
∆t
2 )) = RDωD +RE(ωD + ωE) cos(π − ωE∆t

2 )

⇔ 0 = RDωD −RE(ωD + ωE) cos(ωE∆t
2 ) ⇔ ∆t = αTD

nπ
arccos

 RD
RE

1 + n
α

 ≈ 84 jours .

Le, modèle s’écarte des observations d’environ 12%, ce qui avec le recul peut paraître faible au vu du
caractère arbitraire et simpliste du modèle.

8. a) Dans la suite on note simplement ~aM/RG = ~a l’accélération de M dans RG. On reprend l’expression
de la vitesse en polaires trouvée en 4. :

~a = d~v
dt

∣∣∣∣
RG

= −
(
RE(ωD + ωE)2 cos(ωEt) +RDω

2
D

)
~ur −RE(ωD + ωE)2 sin(ωEt) ~uθ .

D’où, en rappelant que ωE
ωD

= n
α :

||~a|| = 4π2

T 2
D

√
R2
D +R2

E

(
1 + n

α

)4
+ 2RERD

(
1 + n

α

)2
cos

(
n

α

2π
TD

t

)
.

b) ||~a|| est maximale quand

cos
(
n

α

2π
TD

tM

)
= 1 ⇔ tM = p

α

n
TD avec p ∈ N .

On a alors ||~a|| = 4π2

T 2
D

(
RD +RE

(
1 + n

α

)2
)

= 15 m.s−2, mais aussi

~a = −
(
RE(ωD + ωE)2 +RDω

2
D

)
~ur et ~v = (RDωD +RE(ωD + ωE)) ~uθ .

Comme ~uθ.~v > 0 Mars semble aller en avant.
c) ||~a|| est minimale quand

cos
(
n

α

2π
TD

tm

)
= −1 ⇔ tm = (p+ 1

2) α
n
TD avec p ∈ N .

On a alors ||~a|| = 4π2

T 2
D

∣∣∣∣∣−RD +RE

(
1 + n

α

)2
∣∣∣∣∣ = 2, 7 m.s−2, mais aussi

~a =
(
RE(ωD + ωE)2 −RDω2

D

)
~ur et ~v = − (RDωD +RE(ωD + ωE)) ~uθ .

Comme ~uθ.~v < 0 Mars semble aller en arrière.
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III. Modélisation de la nage des bactéries (d’après ENS BCPST 2020)

III.1. Sédimentation d’une bille dans un écoulement à bas nombre de Reynolds

1. La masse de la bille est m = 4
3πr

3
0 ρ0 et celle du fluide déplacé par cette bille est 4

3πr
3
0 ρ. Dans le référentiel

du laboratoire R, supposé galiléen, le Théorème de la Résultante Cinétique (TRC) s’écrit

m
d~V
dt

∣∣∣∣∣
R

= −6πηr0~V +m~g − 4
3πr

3
0 ρ~g ⇔ d~V

dt

∣∣∣∣∣
R

+ 1
τ
~V =

(
1− ρ

ρ0

)
~g avec τ = 2r2

0ρ0
9η .

2. Il s’agit d’une équation linéaire à coefficients constants, et second membre constant. La solution particulière
est cherchée constante et sera la limite pour t→∞ :

~V∞ = τ

(
1− ρ

ρ0

)
~g = −2r2

0 (ρ0 − ρ) g
9η ~uz .

Le mouvement tend donc bien vers un mouvement rectiligne uniforme dirigé selon ~g.
Sachant que ~V (t = 0) = ~0, la solution générale s’écrit ~V (t) = ~V∞

(
1− e−

t
τ

)
.

3. On obtient V∞ = 3, 6µm.s−1 et τ = 0, 6µs. Cela conduit à Re ≈ 10−5 � 1 donc la loi de Stokes s’applique
bien.

4. La bactérie faisant la même taille, le temps caractéristique τ est du même ordre (10−7 s) et donc on peut
considérer la vitesse ~V∞ atteinte immédiatement. Le mouvement est donc rectiligne uniforme et donc la
durée de traversée de la cellule est

∆t = ecell
V∞

= 9ηecell
2r2

0 (ρ0 − ρ) g
= 2, 2× 104 s ≈ 6 h .

La sédimentation devient observable au bout d’un temps de l’ordre dequelques heures, ce qui laisse le
temps de réaliser des mesures facilement.

III.2. Sédimentation d’un cylindre dans un écoulement à bas nombre de Reynolds
5. On peut écrire −→

F v = −λ−→V − λ
(
~V − (−→V .~eZ)~eZ

)
Le premier terme ressemble beaucoup au cas de la sphère, car colinéaire à ~V avec un facteur λ analogue.
Par contre il existe un second terme qui est orthogonal à l’axe du cylindre : ~eZ .

(
~V − (−→V .~eZ)~eZ

)
= 0.

Il y a donc un effet de portance associé à la forme de l’objet.
6. Cette fois le TRC appliqué au cylindre s’écrit

M
d~V
dt

∣∣∣∣∣
R

= −λ
(
2−→V − (−→V .~eZ)~eZ

)
+−→F ext ⇔


V̇X + 2λ

M VX = Fext
M sinψ

V̇Y + 2λ
M VY = 0

V̇Z + λ
M VZ = Fext

M cosψ

par projection.
7. En régime stationnaire, le système ci-dessus devient

2λ
M VX = Fext

M sinψ
2λ
M VY = 0
λ
M VZ = Fext

M cosψ

⇔


VX = Fext

2λ sinψ

VY = 0

VZ = Fext
λ cosψ
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L’angle α vérifie par définition tanα = VX
VZ

d’où α = arctan
(1

2 tanψ
)
.

Le cylindre chute dans la direction de la force extérieure à la condition

α = ψ ⇔ tanψ = 1
2 tanψ ⇔ tanψ = 0 ⇔ ψ = 0 ou π ,

donc si l’axe du cylindre est parallèle à −→F ext (cylindre vertical dans le champ de pesanteur).

III.3. Propulsion d’une bactérie
8. Le pas est la distance parcourue selon l’axe de l’hélice au bout d’un tour :

Λ = 2πh .

9. L’hélice fait un nombre entier n de tours et donc de pas : n = `f
Λ = `f

2πh d’où θ ∈
[
0; `f
h

]
.

10. Si le flagelle se visse dans le fluide sans le faire bouger, la trajectoire de chaque élément du flagelle est
confondue avec le flagelle (qui ne semble pas bouger à part son ses extrémités). Donc au cours d’un tour, la
distance parcourue selon l’axe Oz est égale au pas de l’hélice Λ. La durée d’un tour est égale à la période
de rotation T telle que

2π = ΩT ⇔ T = 2π
Ω d’où Vmax = Λ

T
= ΛΩ

2π = 70µm.s−1 .

Ceci correspond à un nombre de Reynolds de l’ordre 1 de Re = 2aVmaxρ
η ≈ 3× 10−5 � 1. Donc le modèle

de Stokes est applicable.
11. Le vecteur position du cylindre élémentaire se décompose ainsi : −−→OM = a~ur + z~uz avec z = hθ.

On fait varier θ et donc z pour progresser le long de l’hélice, ce qui fait varier ~ur, donc le déplacement
élémentaire vérifie

d−−→OM = d~̀= a d~ur + hdθ ~uz = a dθ~uθ + hdθ ~uz d’où d` =
√
a2 + h2 dθ .

Le vecteur tangent est donné (comme dans le cas de la base de Frenet), par

~u = d~̀
d` d’où ~u = a√

a2 + h2
~uθ + h√

a2 + h2
~uz .

12. Le mouvement du point M a pour vitesse en cylindriques

~V = ṙ~ur + rθ̇~uθ + ż~uz avec r = a = constante , θ̇ = Ω et ż = V d’où ~V = aΩ ~uθ + V ~uz .

13. On en déduit

(−→V .~u) ~u = a2Ω + hV√
a2 + h2

(
a√

a2 + h2
~uθ + h√

a2 + h2
~uz

)
= a2Ω + hV

a2 + h2 (a~uθ + h~uz) d’où

d~Fv = −4πη
√
a2 + h2 dθ

((
2aΩ− a3Ω+ahV

a2+h2

)
~uθ +

(
2V − a2hΩ+h2V

a2+h2

)
~uz
)

= −4πη
√
a2 + h2 dθ

(
a3Ω+2ah2Ω−ahV

a2+h2 ~uθ + 2a2V−a2hΩ+h2V
a2+h2 ~uz

)
1. L’objet n’étant pas sphérique, on pourrait être tenté d’écrire aussi : Re = `fVmaxρ

η
≈ 7 × 10−4 � 1, ce qui est toujours

acceptable.
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Par linéarité de l’intégrale, on obtient en sortant tout ce qui est constant de l’intégrale :

~Fv = −4πη
√
a2 + h2

(
a3Ω + 2ah2Ω− ahV

a2 + h2

ˆ `f/h

0
dθ~uθ + 2a2V − a2hΩ + h2V

a2 + h2 ~uz

ˆ `f/h

0
dθ
)

Étant donné que l’intégration porte sur un nombre entier de tours, on obtient
ˆ `f/h

0
dθ~uθ = ~0 ,

car sur chaque tour on a ~uθ(θ) annulé par ~uθ(θ + π) = −~uθ(θ). Il ne reste donc que la composante selon
~uz :

~Fv = −4πη`f
2a2V − a2hΩ + h2V

h
√
a2 + h2

~uz = −4πη`f
2a2 + h2

h
√
a2 + h2

V ~uz + 4πη`f
a2Ω√
a2 + h2

~uz

On identifie deux termes de signes opposés. Le premier s’oppose au mouvement de translation de vitesse
V ~uz, c’est donc une traînée

T~uz = −4πη`f
2a2 + h2

h
√
a2 + h2

V ~uz .

Le second est dans le sens de +~uz et proportionnel à la vitesse de rotation, c’est donc un terme de
propulsion :

P~uz = 4πη`f
a2Ω√
a2 + h2

~uz .

14. On fait le rapport entre les deux forces de traînée s’exerçant respectivement sur le flagelle et sur la sphère :

T

6πηRV = 2`f
3R

2a2 + h2

h
√
a2 + h2

≈ 29� 1 .

On peut donc négliger la force de traînée sur le corps par rapport à celle sur le flagelle.
15. En régime stationnaire on a

T + P = 0 ⇔ −4πη`f
2a2 + h2

h
√
a2 + h2

V + 4πη`f
a2Ω√
a2 + h2

= 0 ⇔ V = ha2

2a2 + h2 Ω .

16. On obtient V = 31µm.s−1. Cette vitesse est bien inférieure à la vitesse Vmax obtenue précédemment. La
vitesse de sédimentation était V∞ ≈ 0, 02µm.s−1, elle est donc bien négligeable par rapport à la
vitesse de nage de la bactérie.
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