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ONDES ET MECANIQUE

I. Détection d’étoiles doubles par interférométrie

1. Pour un milieu non dispersif et non absorbant, la relation de dispersion s’écrit

(d’aprés Mines 2004 et CCP MP 2008)

2 2 g
=2 e oL ol 10M .
c A c LN P —
2. Le théoréme d’Al Kashi conduit a
‘A(M) = /A3 + 43 + 24, A5 cos(Ap(M)) |. 3,
3. Les deux ondes ont la méme intensité donc —g
Iy =28 < s3(M,t) >=28A2 < cos’(wt — kry +@o1) >= A} et Iy = BA3. we kry+ o,
=
Ainsi 7 A
I(M) = BAX (M) don [I(M) = 2]y (1+cos(Ag))]. S5 wE-hn,t %or
4. On a Ap = —k(ro — 1) + po2 — wo1 et le déphasage des sources entre elles est du a la différence de
distance parcourue avant les trous : @g2 — po1 = k H.S;. Ainsi, par définition
2 .
A¢=_76(h1) d’ou ‘J(A[)zrg—m—Hsl‘.
5.
1
2
2, .2 2 2,2, 2
) ar  rP+y +a’/4| ar | x*+y +a’ /4
m=SM=y/(w—a/2’+y?+D*=D |1-ps+ ——p5—— | RD|l-gm+
X<1
ar 2?4y +a?/4
d’ot A~ D— — :
ou |7y 5D + %)
2 .2, 2
4
en se limitant & 'ordre 2 dans ’approximation. De méme on obtiendra |7y = D + % % .

I g—
6. On note que l'angle € se reporte dans le triangle rectangle H.S1.52 de telle sorte que € = (5251, Szﬁ), ce

qui permet d’écrire
HS1 =asine = ae,

relation algébrique qui sera utilisable aussi si € < 0. En réunissant les résultats des 3 précédentes questions

on obtient finalement

S(M) = % —ae  don .

2
Ii(z) =21 (1 + cos (

T5-9)))

. Le premier maximum est obtenu pour

2ra
cos(T(%"fe)>:1 = 575:0 &
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8. Les deux premiéres franges sombres sont localisées respectivement en x_ et z telles que

10.

11.

12.

13.

(27ra T4
cos — —

_ 2ra (x4 _
TE-a)=nt = (T e

rye =D (ii+e> .

On en déduit l'interfrange, qui est I’espacement entre 2 franges sombres (ou brillantes) consécutives :

AD
D]

=Ty —x_ =

La seconde étoile donne la méme forme d’intensité a condition de remplacer € par —e :

Ir(z) =21y (1 + cos <27TTG(§ + e))) .

En utilisant cosp + cos ¢ = 2 cos (L;q) cos ("—42"1), on obtient :

I(z) = Ii(x) + Ix(z) = 41o (1 + cos (?) cos (2:;;)) .

On en déduit

Iiin = 410 (1 -

cos (27;“) D et Imax = 41y (1 +

C =

cos (27;(16) D d’ou

?)‘ € [0;1].

Le contraste est donc nul si

2 2
cos(ﬂT(m):O < dneN, W:nengrmr &

an = (3 +n)

Ce résultat peut se comprendre d’apres la figure représentée en 9. : la premiere frange brillante de I; est en
9 = De alors que celle de I3 sera en —xg = —De. Or l'interfrange i = ’\TD, qui est le méme pour I et Iy,
diminue lorsque a augmente. Donc il y aura brouillage des franges si les franges brillantes de I; coincident
avec des franges sombres de Io, c’est-a-dire si le décalage 2z correspond a un nombre demi-entier de fois

Uinterfrange :

2z0 = (5 +n)i

On a donc pour n =0 :

@9 = Gmin =

54

A

4e

2De = (3 +n) AD

an

A
& |2 =
2arnin

54

an = (3 +n)

2 |’

~4x10%rad ~ 1”.

Le pouvoir séparateur de I'ceil étant de I'ordre de qq 107* rad (quelques dixiemes de mm discerné & 1 m
de distance), on accéde ici & une distance indiscernable & I’ceil nu grace a la mesure de amin

donnant lieu au premier brouillage.



PCSI 1 - Stanislas

DS de PHYSIQUE N°5 - 1//01/23 - CORRIGE A. MARTIN

Mouvement de Mars vu de la Terre : théorie des épicycles

. Les vitesses angulaires étant constantes, d’apres les conditions initiales on peut écrire : § = wpt et ¢ = wgt.

Or m = T‘D) + DM avec

— —
ﬁ = Rpt, et DM = Rg(cosdu,+sinpty) dou ‘

Or i, = cos 0 iy + sin 0 iy et iy = — sin 0 i, + cos O iy, donc apres regroupement des termes on obtient

—
TM = (Rp cos(wpt) + RE cos((wp + wg)t)) U, + (Rp sin(wpt) + Resin((wp + wg)t)) iy ‘

Reamrque : Cette relation peut étre obtenue sans passer par la base polaire, directement en remarquant

que (ﬁI7TM>) =0+¢.

. Dans les situations ou les trois points sont alignés, on a dy = Rp — Rp et do = Rp + R d’ou

Rp=34(di+d2)|=2,3x10"km et |Rp=L(do—di)|=1,7x10"km.

. Notons Tp = 3—; la période du mouvement de D (durée d’un tour autour de T'), et T = 3—7’; la période du

mouvement de E (durée d’un tour autour de D). Par définition de Ty, au bout d’une durée Ty = 671p,
le M retrouve sa position initiale. Pendant cette durée le point D a effectué 67 tours donc il retrouve
aussi sa position initiale. Par conséquent les points T, D, M sont de nouveau alignés et M a donc aussi
effectué nombre entier n € N* de tours autour de D. On a donc

R 2m 2m n
dot a—=n— & |wp=—wp|.
wWp wWE «

T]u = OzTD et T]\,[ = ’H,TE

Supposons que n = pa avec p € N*, on aurait alors Tp = pTr donc les 3 points seraient de nouveau
alignés au bout d’une durée Tp donc Tp = Ty, ce qui est absurde. Donc n n’est pas un multiple de
a.

. Dans la suite on note simplement @/, = ¥ la vitesse de M dans R. On reprend I'expression de la

position en polaires trouvée en 1. :

_aTM

o = —wp U, d’ou
dt "

da,
avec —
Ra Ra

‘17: —Rp(wp + wg) sin(wgt) 4, + (Rpwp + Re(wp + wg) cos(wgt)) Uy ‘

apres regroupement des termes.

. L’existence d’un mouvement rétrograde se traduit par une vitesse orthoradiale négative :

Up. ¥ <0 << Rpwp+ Re(wp +wg)cos(wgt) <0

R R
= ﬁ>R—D71 & avec Ic:R—Dfl
a E E

= RprfRE(wDerE) <0

R wg _ R
& wptwgp > 7DOJD & rE > 7D71
Rp wp Rg

On trouve alors n > 22 avec n ¢ aN.

. Si la condition de rétrogradation est satisfaite, il existe un mouvement rétrograde a chaque tour

de M autour de D, pendant la phase oit M est entre T" et D. Donc n = 24, ce qui est cohérent avec la
condition précédente.

. La vitesse de rétrogradation est maximale (minimale en valeur algébrique) a I'instant ¢,,, lorsque T', M,

et D sont alignés dans cet ordre. On a alors

9.0 = Rpwp — Rp(wp +wg) <0 car
3

cos(wptm) = —1.

TM = (Rp + Rg cos(wgt)) 4y + R sin(wgt) tp |.
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Par parité du cos, la durée de rétrogradation At est partagée équitablement entre avant et apres cet

extremum. On a donc au début de la rétrogradation une vitesse orthoradiale nulle a I'instant tg = t,, —

- At wpAt
i9.0 =0 = Rpwp + Rp(wp + wg) cos(wg(tm — 7)) = Rpwp + Rg(wp + wg) cos(m — £ )
wpAt £
< 0= Rpwp — Re(wp + wg) cos( L ) & | At= "= arccos 11_7_52 ~ 84 jours.
«

At .
5 :

Le, modele s’écarte des observations d’environ 12%, ce qui avec le recul peut paraitre faible au vu du

caractere arbitraire et simpliste du modele.

8. a) Dans la suite on note simplement @y;/g,, = @ laccélération de M dans Rg. On reprend I'expression

de la vitesse en polaires trouvée en 4. :

7
dt

a=

= (RE(wD + wE)2 cos(wgt) + RDw%,) U, — Rp(wp + wE)Z sin(wgt) Up |.
Ra

3 A1y . P WE _n .
D’on, en rappelant que cE=0

N 472 n\* n\2 n 2w
||| = 77 wﬁ) + R%, (1 + E) +2RgRp (1 + E) cos (Egt) .
b) ||@|| est maximale quand

(n 271't ) N
cos | ——ta ) =
oTp M

avec peN.

a
ty=p—1p
n

i, 42 n\? 9 . .
On aalors |||d|| = — | Ro + Re (1 + — = 15m.s"% mais aussi
T5 a

D
a=— (RE(WD +WE)2+RDW2D> U, et U= (Rpwp+ Reg(wp+wg)) ty. T‘ b
Comme 1.7 > 0 Mars semble aller en avant.
c) ||d]|| est minimale quand
2
cos<ﬁ—ﬂtm>:*1 o tm:(er%)gTD avec p € N.
aTp n
D
. 42 n\? g . . 2
On a alors | ||d@]| = -5 |-Rp + R (1+ — = 2,7m.s”~, mais aussi M
T3 @ E—
T
= 2 2\ - = - L
a= (RE(wD +wg)” — RDwD) U, et U=—(Rpwp+ Rp(wp +wg)) dy.

Comme 1.0 < 0 Mars semble aller en arriére.

al

e}
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P L. L I
I1l. Modélisation de la nage des bactéries (d’aprés ENS BCPST 2020) L'angle a vérifie par définition tane = % d'ol | = arctan (Etan w) _
I1I.1. Sédimentation d’une bille dans un écoulement a bas nombre de Reynolds Le cylindre chute dans la direction de la force extérieure a la condition
1. La masse de la bille est m = 4773 pg et celle du fluide déplacé par cette bille est 2773 p. Dans le référentiel 1
3770 0 place b 370 P = tany = =t tany = 0 0
du laboratoire R, supposé galiléen, le Théoréme de la Résultante Cinétique (TRC) s’écrit a=y & tany 2 any & tany < ’
av . o4, av 1. o\ L 220 donc si 'axe du cylindre est parallele a ?ext (cylindre vertical dans le champ de pesanteur).
m —| = —6mnroV +mg— smrgpg & —| +-V=[(1-—]g| avec |7= .
dt |, 3 dat |, 7 Po 9 A .
111.3.  Propulsion d’une bactérie

2. Il s’agit d’une équation linéaire a coeflicients constants, et second membre constant. La solution particuliere 8. Le pas est la distance parcourue selon I'axe de 'hélice au bout d’un tour :

est cherchée constante et sera la limite pour ¢t — oo :
[A = 2nh].

- o2 _
Vm:T<1,£)§:,MﬁZ‘

14
Po 9 9. L’hélice fait un nombre entier n de tours et donc de pas : n = %’ = 215# d’ou |0 € [0; Zf] .
Le mouvement, tend donc bien vers un mouvement rOCtihgnC urjlforrrlc dlrl§C selon g. 10. Si le flagelle se visse dans le fluide sans le faire bouger, la trajectoire de chaque élément du flagelle est
Sachant que V (¢t = 0) = 0, la solution générale s’écrit | V(t) = Vo (1 - 677> ‘ confondue avec le flagelle (qui ne semble pas bouger & part son ses extrémités). Donc au cours d’un tour, la

distance parcourue selon 'axe Oz est égale au pas de I’hélice A. La durée d’un tour est égale a la période

3. On obtient Voo = 3,6 um.s~! et 7 = 0,6 us. Cela conduit & R, ~ 10~° < 1 donc la loi de Stokes s’applique de rotation T telle que

bien.
) ric fais A . dristi a -7 ut 2 . A AQ
4. La b.aclterle fawlant la méme t.alllei le t?nhlps caractéristique 7 est du méme ordr(I% .(10 s). -et donc on peut = OT o T— 2T Lo Vi = = = — 70 pm.s.
considérer la vitesse V4 atteinte immédiatement. Le mouvement est donc rectiligne uniforme et donc la 9] T 2 —_——

durée de traversée de la cellule est .
Ceci correspond & un nombre de Reynolds de ordre® de Re = Z"V;%‘” ~ 3 x 107% < 1. Donc le modele
—=292%x10's~6h. de Stokes est applicable.

Ccell __ IMeeal
Voo 2r5(po—p)yg

At =

oy
11. Le vecteur position du cylindre élémentaire se décompose ainsi : OM = ail, + zi, avec z = hf.
On fait varier 6 et donc z pour progresser le long de I’hélice, ce qui fait varier u,, donc le déplacement

La sédimentation devient observable au bout d’'un temps de l'ordre dequelques heures, ce qui laisse le o . o
élémentaire vérifie

temps de réaliser des mesures facilement.

—
. . . A N dOM = d¢ = add, + hdf @, = adfiy + hdf @, dou |dl =+a?+ h2d0|.
I111.2. Sédimentation d’un cylindre dans un écoulement a bas nombre de Reynolds adu, + U, = adfiy + f ol Va2 +

5. On peut écrire Le vecteur tangent est donné (comme dans le cas de la base de Frenet), par
?U:f)\vf/\(vf(‘_/).ez)ez) o e p - - -
., iu=— dou |u= iy + - iy |.
Le premier terme ressemble beaucoup au cas de la sphere, car colinéaire & V' avec un facteur A analogue. de VaZ+ h? Va2 + h?

Par contre il existe un second terme qui est orthogonal a ’axe du cylindre : €. (\7 —( .€Z)é'z) =0.

Iy a donc un effet de portance associé i la forme de Iobjet. 12. Le mouvement du point M a pour vitesse en cylindriques

. Lo TR . ) . —
6. Cette fois le TRC appliqué au cylindre s'écrit V =7, +rbig+ 214, avec r=a=-constante, 0 =0 et 2=V dou |V =aQiy+ Vi,|.

y 22 _ Foxt o
av Vx +5Vx = TFfsing 13. On en déduit
M| =2 (2V - (Venaz) + Fen & 3 h+B% = 0 ) 2
dtR (74)4 aSlJrhV( a i+ h ﬂ) aSZJrh,V(H_"_hH) d'ot
. ) U= 4 U, | = at, U ou
Vz+ Ve = Lgtcosy VR \VaZ+12 ' Vath a? + h? ’ :
par projection. - : 3 . 2 2 N
o o , dF, = —4mVa® + W20 (200 — CHY) @y + (2V — CEEV) )
7. En régime stationnaire, le systéme ci-dessus devient 5 ) b s )
= g IR A (G gy | 2V )
% Vx = %}t sin Vx = th sin 1 v
2 1. L’objet n’étant pas sphérique, on pourrait étre tenté d’écrire aussi : Re = —L-22x2 ;’I‘”‘p ~ 7x 107" « 1, ce qui est toujours
WVY =0 = Ww =0 acceptable.
2V, = Eecosy Vz = % cos

5 6
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14.

15.

16.

Par linéarité de I'intégrale, on obtient en sortant tout ce qui est constant de I'intégrale :

7 4 nm <a Q + 2ah*Q — ahV /l/f/h i, 2a2VfaZhQ+h2V //f/h )
w = —4m

a? + h? R

Etant donné que I'intégration porte sur un nombre entier de tours, on obtient

05 /h .
/ dfiy =0,
0

car sur chaque tour on a @y(#) annulé par iy(6 + 7) = —tp(0). Il ne reste donc que la composante selon
Uy :
~ 202V — a’hQ + h2V 2a? + h? a’Q
F:747ré— . = —4mnl Vi, +4mly ——=1u
K ha? + 12 e T e

On identifie deux termes de signes opposés. Le premier s’oppose au mouvement de translation de vitesse
Vi, c’est donc une trainée

Le second est dans le sens de +u, et proportionnel & la vitesse de rotation, c’est donc un terme de
propulsion :

a?Q
— U
Va2 + h?

On fait le rapport entre les deux forces de trainée s’exercant respectivement sur le flagelle et sur la sphere :

Pii, = 4mnly

T 205 2a®+h?
6mRV ~ 3R hv/aZ + h2

On peut donc négliger la force de trainée sur le corps par rapport a celle sur le flagelle.

~29>1.

En régime stationnaire on a

242 + h? ha?

V + 4l =0 & |V=-—S—750Q]
h% +dmnly ——— /72_"_}1 202 + h2

On obtient V' = 31 um.s_l‘ Cette vitesse est bien inférieure a la vitesse Vipax obtenue précédemment. La
vitesse de sédimentation était Vy ~ 0,02 ym.s~', elle est donc bien négligeable par rapport a la
vitesse de nage de la bactérie.



