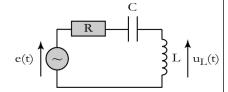
Circuits linéaires en Régime Sinusoïdal Forcé

EX 1 – Association de dipôles

- 1. Pour l'association en série d'une résistance avec :
 - (i) une bobine,
 - (ii) une bobine et un condensateur disposés en série, déterminer l'impédance équivalente et le déphasage de la tension aux bornes des ensembles par rapport à l'intensité du courant qui les traverse. Retrouver le résultat par un schéma de type Fresnel.
- 2. Pour l'association d'une résistance en parallèle avec :
 - (i) une bobine,
 - (ii) une bobine et un condensateur disposés en parallèle, déterminer l'admittance équivalente et le déphasage de l'intensité du courant qui les traverse par rapport à la tension à leurs bornes. Retrouver le résultat par un schéma de type Fresnel.

EX 2 – Lois de Kirchhoff en représentation complexe

Le générateur délivre une tension alternative $e(t) = E\cos\omega t$ d'amplitude E et de pulsation ω . On a choisi l'origine des temps de sorte que la phase de e(t) soit nulle.

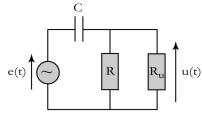


- 1. A l'aide de schémas équivalents, déterminer la tension u_L aux bornes de la bobine dans la limite $\omega \to 0$ et $\omega \to \infty$.
- **2.** Déterminer l'expression de $u_L(t)$ en régime sinusoïdal permanent. $u_L(t)$ estelle en avance ou en retard par rapport à e(t)?
- 3. AN : On donne E=10V, R=1k Ω , L=0, 1H et $C=1\mu$ F. Déterminer l'amplitude du signal de sortie $u_L(t)$ ainsi que sa phase, pour un signal d'entrée de fréquence f=250Hz, puis 5kHz.

EX 3 – Réponse harmonique

Le circuit ci-dessous est soumis à une excitation sinusoïdale $e(t) = E\cos(\omega t)$.

- 1. A l'aide de schémas équivalents, déterminer la tension u dans la limite $\omega \to 0$ et $\omega \to \infty$.
- 2. Déterminer la réponse harmonique u(t) du circuit, en régime sinusoïdal forcé, pour tout ω .



3. Tracer l'évolution de l'amplitude et de la phase de u en fonction de la pulsation d'excitation ω .

EX 4 – Appareils ménagers

Une installation comprend un lave-linge assimilable à un ensemble série (R_1, L_1) , et un lave-vaisselle assimilable à un ensemble série (R_2, L_2) , le tout connecté au réseau EDF délivrant une tension sinusoïdale de fréquence 50 Hz et de valeur efficace $U=220\,\mathrm{V}$. On donne : $R_1=10\,\Omega,\ R_2=8\,\Omega,\ L_1=0,038\,\mathrm{H}$ et $L_2=0,20\,\mathrm{H}$.

- 1. Quelle est l'intensité efficace I_1 du courant circulant dans son installation électrique lorsqu'elle n'utilise que le lave-linge? Quel est le déphasage φ_1 du courant par rapport à la tension?
- 2. Quelle est l'intensité efficace I_2 du courant lorsqu'elle n'utilise que le lavevaisselle? Quel est le déphasage φ_2 du courant par rapport à la tension?
- **3.** Quelle est l'intensité efficace du courant I_3 lorsqu'elle utilise les deux machines en même temps?

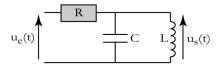
EX 5 – Installation électrique

Une lampe à incandescence (résistance pure R_0) possède les caractéristiques suivantes : puissance moyenne $\mathcal{P}=55\,\mathrm{W}$, tension efficace $U=110\,\mathrm{V}$, fréquence $f=50\,\mathrm{Hz}$.

- 1. Déterminer la résistance de cette lampe et l'intensité qui circule dans celle-ci.
- 2. Quelle résistance R faut-il lui associer en série pour la faire fonctionner sous $V=240\,\mathrm{V}$ (efficaces).
- 3. Quel condensateur (de capacité C) faut-il lui associer en série pour la faire fonctionner sous $V=240\,\mathrm{V}$?
- 4. Peut-on associer ce condensateur en dérivation pour la faire fonctionner sous $V=240\,\mathrm{V}$?
- 5. Montrer que la puissance moyenne consommée vaut $\mathcal{P} = VI\cos\varphi$, où I est le courant efficace et φ le déphasage entre courant et tension. En déduire quelle solution choisir parmi les précédentes?

EX 6 – Résonance en tension d'un circuit

On considère le circuit représenté sur la figure ci-dessous où $u_e(t)$ est une tension sinusoïdale de pulsation ω . On ne s'intéresse $u_e(t)$ qu'au régime sinusoïdal forcé.

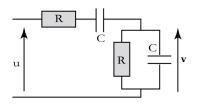


- 1. Donner l'expression de l'amplitude complexe de la tension $u_s(t)$ récupérée en sortie.
- **2.** (a) établir qu'il y a un phénomène de résonance de cette tension pour une pulsation à préciser.
 - (b) Déterminer l'acuité de la résonance et en déduire l'expression du facteur de qualité.
 - (c) Que peut-on dire du déphasage φ à la résonance de la tension u_s ?
- 3. Comparer cette résonance avec la résonance en intensité d'un circuit RLC série.

EX 7 – Notation complexe vers équation différentielle

On considère le circuit ci-dessous, appelé pont de Wien, alimenté par une tension u(t) sinusoïdale de pulsation ω .

- 1. En régime sinusoïdal permanent, déterminer le lien entre les complexes \underline{u} et \underline{v} associés à u(t) et v(t), en fonction de ω et ω_0 .
- 2. En déduire l'équation différentielle qui relie les quantités u(t) et v(t). La mettre sous forme canonique.



EX 8 – Amélioration du facteur de puissance d'un moteur

Un moteur fonctionnant en courant alternatif est alimenté par une tension efficace $E=220\,\mathrm{V}$ et de fréquence $f=50\,\mathrm{Hz}$, par le réseau E.D.F. Il consomme une puissance moyenne (ou puissance active) $\mathcal{P}_{\mathrm{moy}}=4,4\,\mathrm{kW}$ et son facteur de puissance 1 est $\cos\varphi=0,6$, où φ est le déphasage entre tension et courant. L'impédance de ce moteur est équivalente à une résistance R associée en série avec une inductance L.

1. Exprimer le courant i(t) en fonction notamment de E, R, L et $\omega = 2\pi f$.

2. Soit I_m l'amplitude de i(t), montrer que la puissance moyenne reçue par le moteur vérifie

$$\mathcal{P}_{\text{moy}} = \frac{1}{2} U_m I_m \cos \varphi$$

Calculer \mathcal{P}_{mov} en fonction de E, R, L et ω .

- 3. Exprimer le facteur de puissance en fonction de E, R, L et ω .
- **4.** En déduire R et L.
- **5.** Calculer la capacité C du condensateur à placer en parallèle sur le moteur pour relever le facteur de puissance à la valeur 0,9. Quel est l'intérêt de l'opération?

^{1.} On l'appelle ainsi car il intervient dans le calcul de la puissance moyenne par : $\mathcal{P}_{\text{moy}} = \langle u(t)i(t) \rangle = \frac{1}{2} U_m I_m \cos \varphi = U_e I_e \cos \varphi$, à démontrer dans cet exercice.