Simulation de mouvements balistiques

Objectif:

On souhaite simuler le mouvement d'un projectile de masse m, lancé avec une vitesse initiale \vec{v}_0 faisant un angle α avec l'horizontale, et soumis à la pesanteur et à une force de frottement fluide \vec{F} soit linéaire soit quadratique en la vitesse.

En posant $\vec{v} = v_0 \, \vec{v}$ et $t = \tau \, \tilde{t}$, on aboutit aux équations adimensionnées suivantes.

• Force linéaire $\vec{F} = -\lambda \vec{v}$:

$$\frac{\mathrm{d}\vec{\tilde{v}}}{\mathrm{d}\tilde{t}} = -\tilde{g}\,\vec{u}_z - \tilde{\tilde{v}} \quad \text{avec} \quad \tilde{g} = \frac{g\tau}{v_0} \quad \text{et} \quad \tau = \frac{m}{\lambda} \,. \tag{1}$$

• Force quadratique $\vec{F} = -\beta ||\vec{v}|| \vec{v}$:

$$\frac{\mathrm{d}\vec{v}}{\mathrm{d}\tilde{t}} = -\tilde{g}\vec{u}_z - \frac{1}{\tilde{g}} ||\vec{\tilde{v}}||\vec{\tilde{v}} \quad \text{avec} \quad \tilde{g} = \frac{g\tau}{v_0} \quad \text{et} \quad \tau = \sqrt{\frac{m}{\beta g}}. \tag{2}$$

1. Sur papier, formuler chacune des deux équations différentielles sous la forme d'un problème de Cauchy

$$\frac{\mathrm{d}\vec{Y}}{\mathrm{d}t} = \vec{F}(\vec{Y}) \,,$$

en explicitant le vecteur \vec{Y} et la fonction vectorielle \vec{F} .

- 2. Construire deux fonctions frottement_lineaire(Y,v0,tau) et frottement_quadratique(Y,v0,tau) générant le second membre $\vec{F}(\vec{Y})$ de chacune de ces équations différentielles, sous la forme d'un vecteur (array de longueur 4).
- 3. Construire une fonction euler (F, v0, tau, Y0, t0, tN, N) permettant de résoudre ces équations par la méthode d'Euler, en découpant l'intervalle en N pas de temps entre les instants t0 et t_N , pour une fonction F à fournir. La fonction renverra les valeurs des instants t_n , des positions x_n et y_n et des vitesses \dot{x}_n et \dot{y}_n sous la forme de vecteurs (longueur N+1).
- 4. Écrire une fonction tir(F,v0,tau,Y0,t0,tN,N) qui renvoie un graphe légendé du tir avec frottement.

Tester la fonction avec $v_0 = 10 \,\mathrm{m.s^{-1}}$, $\alpha = 30^{\circ}$ et $\tau = 1 \,s$ par exemple.

5. Écrire une fonction comparaison(F,v0,tau,Y0,t0,tN,N) qui renvoie un graphe légendé superposant 4 courbes de couleurs différentes représentant :

- la parabole du tir sans frottement calculée analytiquement (solution exacte);
- la solution numérique du tir sans frottement;
- la solution numérique du tir avec frottement linéaire;
- la solution numérique du tir avec frottement quadratique.

Tester la fonction avec différentes valeurs de v_0 , α et τ . Adapter la résolution temporelle pour obtenir un tir sans frottement conforme à la solution analytique.

- 6. Écrire une fonction portee(F,v0,tau,Y0,t0,tN,N,eps) qui cherche par dichotomie la portée du tir, avec une précision eps.
- 7. Écrire une fonction portee_max(F,v0,tau,Y0,t0,tN,N,eps) qui cherche la portée maximale du tir, avec une précision eps.