
PCSI 1 - Stanislas - TP Mécanique N◦1 - Tests de traction et loi de Hooke A. MARTIN

Tests de traction et loi de Hooke
Prenez en note tout élément pouvant figurer dans un compte-rendu de TP :

mesures, calculs d’incertitude, observations (schémas) et interprétations, méthodes expérimentales...

Objectifs :
— Vérifier expérimentalement la loi de Hooke de l’élasticité sur un fil et sa limite de validité.
— Mettre en évidence une déformation plastique et un seuil de rupture.

Capacités expérimentales exigibles :
• Mettre en œuvre un protocole expérimental permettant d’étudier une loi de force.
• Mettre en œuvre un microcontrôleur lors d’un test de traction.
• Utiliser un dynamomètre.

I. Introduction

Déformation élastique ou plastique, rupture
L’élasticité est la capacité d’un matériau solide à retrouver sa forme d’origine après avoir été déformé

par des forces qui lui sont appliquées. Un matériau élastique retrouve sa forme et sa taille initiales quand
ces forces ne s’exercent plus, jusqu’à une certaine limite de la valeur de ces forces.
L’élasticité linéaire concerne les petites déformations proportionnelles à la sollicitation. Dans cette
gamme, l’allongement est proportionnel à la force dans le cas d’un étirement (ou d’une compression),
selon le module de Young, et l’angle est proportionnel au « couple » 1 dans le cas d’une torsion, selon le
module de Coulomb.
Pour certains matériaux (cahoutchoucs élastiques), l’élasticité peut parfois devenir non linéaire aux
grandes déformations.
Pour d’autres (la plupart des matériaux cristallins notamment), la fracture intervient après une phase de
déformation plastique plus ou moins longue. La théorie de la plasticité traite des déformations irréver-
sibles indépendantes du temps. Certains matériaux, dits fragiles, cassent dans le mode de déformation
élastique si la sollicitation est trop forte. Pour les matériaux dits ductiles, une augmentation suffisante
de la sollicitation entraîne une déformation définitive sans rupture ; à l’arrêt de la sollicitation, la pièce
reste déformée. C’est par exemple le cas d’une petite cuillère qui a été tordue : on ne pourra jamais la
redresser pour lui faire reprendre sa forme initiale.
Par ailleurs, notons que si une contrainte même inférieure à la limite d’élasticité est maintenue dans le
temps (déformation lente ou comportement statique), le matériau peut éventuellement se déformer par
fluage (déformation irréversible différée). De façon générale, le critère cinétique intervient lui aussi dans
le comportement du matériau soumis à des sollicitations.

Test de traction

Un essai de traction est une expérience qui permet d’obtenir des informations
sur le comportement élastique, le comportement plastique et le degré de ré-
sistance à la rupture d’un matériau, lorsqu’il est soumis à une sollicitation
uniaxiale.
Prenons le cas de la traction ou de la compression d’une pièce cylindrique ou
parallélépipédique selon son axe. La traction-compression correspond à des
forces s’exerçant perpendiculairement aux sections de ces pièces ; elle est dite
uniaxiale car les côtés de la pièce ne sont pas contraints, toutes les forces sont
sur un même axe.
En prenant des pièces de différentes dimensions, on remarque que :

1. c’est-à-dire au moment dynamique résultant.

1

PCSI 1 - Stanislas - TP Mécanique N◦1 - Tests de traction et loi de Hooke A. MARTIN

— pour une force donnée, l’allongement ∆` est proportionnel à la longueur initiale `0 du cylindre ;
— pour une longueur donnée, la force de traction ou compression est proportionnelle à l’aire S

de la section du cylindre.
Si l’on veut caractériser le matériau en faisant abstraction de la forme de la pièce et de ses dimensions,
on définit donc :

• l’allongement relatif ou déformation (en anglais strain)

ε = ∆`
`0

= `− `0
`0

sans dimension, parfois exprimé en %.
• la contrainte (en anglais : stress) est la force par unité de surface de section,

σ = F

S

Elle est homogène à une pression, et généralement exprimée en mégapascal (MPa, du fait des
valeurs énormes mises en jeu). Elle est parfois aussi notée R.

Loi de Hooke

La loi élastique s’écrit alors :
σ = Eε

où E est le module de Young, qui est une caractéristique du matériau, généralement exprimé en giga-
pascals (GPa).

La courbe de traction dite « conventionnelle 2 » est obtenue en traçant la contrainte en fonction de
l’allongement relatif.
Pour un matériau ductile, on obtient typique-
ment l’allure ci-contre (Fig. 1).

Dans un premier temps, la déformation est élas-
tique donc la courbe est une droite linéaire, de pente
E.
À partir d’un certain allongement, la courbe s’in-
fléchit : c’est le début de la déformation plastique.
La transition peut être franche (rupture de pente),
ce qui permet de déterminer facilement la limite
d’élasticité Re. Lorsque la rupture de pente n’est
pas franche (cas des matériaux très ductiles), on
définit la limite d’élasticité conventionnelle Re0,2

comme étant la contrainte donnant 0,2 % de dé-
formation résiduelle.
La courbe de traction présente ensuite un maximum
qui détermine la résistance à la traction conven-
tionnelle Rm. L’allongement plastique à ce point
est appelé allongement sous charge maximale et est
noté Ag ; c’est la déformation résiduelle maximale
que l’on peut imposer. On définit également l’allon-
gement total sous charge maximale, Agt, qui inclut
la déformation élastique.

Figure 1 – Courbe de traction conventionnelle ty-
pique d’un matériau ductile (Par Cdang - Travail person-
nel, from File :Courbe contrainte vs deformation.png. https ://-
commons.wikimedia.org/w/index.php ?curid=21883751).

2. En toute rigueur on a définit ici la déformation et la contrainte dites nominales, c’est-à-dire à partir des dimensions
initiales `0 et S avant traction. Le calcul de la déformation et de la contrainte dites vraies, c’est-à-dire prenant en compte
l’évolution continue de la longueur et de la section au cours de l’essai donne lieu à la courbe dite « rationnelle », un peu
différente. Comme nous travaillons ici sur des fils, ce calcul est hors de portée et on se restreindra à la courbe conventionnelle.

2

PCSI 1 - Stanislas - TP Mécanique N◦1 - Tests de traction et loi de Hooke A. MARTIN

À partir de ce point, la déformation est concentrée dans une zone, c’est la striction (« étranglement »).
La force enregistrée diminue, puisque la section diminue dans la zone de striction. La rupture a ensuite
lieu dans la zone de striction.
Pour un matériau fragile, la rupture survient en fin de domaine élastique. L’allongement plastique
à la rupture est nul ou très faible. On ne peut déduire de la courbe que le module de Young E, et la
résistance à la traction Rm.

II. Dispositif expérimental

Schéma complet
Une plate-forme de traction permet d’étirer un fil entre l’extrémité mobile d’un actionneur linéaire

et un support fixe muni d’un capteur de force (cf Fig. 2).

Alimentation

+−

moteur

Capteur de forceActionneur lineaire Fil test

USB
PYTHON

ARDUINO

Ordinateur

ARDUINO

Potentiometre

AV − AR

Bouton

CYTRON

GND 10V

GND +15V−15V

AMPLI
Signal force

A15V GNDA0

amplifie

Signal force

capteur

Alimentation

Signal

position

capteur

Alimentation

+
−

GND

OUT

Figure 2 – Schéma complet du dispositif expérimental.

• Le moteur de l’actionneur est piloté par une alimentation en tension continue réglable suivie d’une
plaquette de commande CYTRON 3 permettant d’inverser le sens du déplacement (via le signe de
la tension appliquée au moteur). À charge constante, la vitesse de déplacement est proportionnelle
à la tension appliquée.

• La position du bras mobile sur une plage de 25 cm est captée via un potentiomètre interne, qui
fourni une tension variable en relation affine.

• La force est mesurée via un capteur de force, qui transforme la déformation élastique d’une jauge
de déformation 4 en une tension proportionnelle via à un pont de Wheatstone intégré (cf documen-
tation fournie). Ce signal très faible nécessite d’être amplifié par un amplificateur différentiel conçu

3. Cet élément aurait pu être remplacé par un simple système de commutation via interrupteurs. Mais cette plaquette
a été choisie pour plus de confort et de polyvalence, permettant si besoin de piloter le moteur via un microcontroleur.

4. Il s’agit d’un piézorésistor. La piézorésistance est le changement de résistance d’un résistor dû à une contrainte
mécanique, qui peut modifier à la fois la géométrie et la conductivité du matériau.

3

PCSI 1 - Stanislas - TP Mécanique N◦1 - Tests de traction et loi de Hooke A. MARTIN

sur mesure 5, qui permet aussi d’alimenter indirectement le pont de Wheatstone du capteur (10V).
Cet amplificateur doit être alimenté (comme un ALI) avec une alimentation −15V , 0V , +15V.

• La carte ARDUINO sert de carte d’acquisition : elle réalise l’échantillonnage et la conversion
Analogique-Numérique des signaux des capteurs (entrées A0 et A1 0-5V, conversion sur 10 bits
donc 1024 niveaux de quantification), et la transmission périodique vers l’ordinateur via le port
série pour le traitement des données. On utilise aussi sa tension d’alimentation de 5V pour alimenter
le capteur de position de l’actionneur.

• L’ordinateur permet de traiter les données. La carte ARDUINO est ici utilisée en « mode Maître-
Esclave » c’est-à-dire directement pilotée via le port série par un script Python qui recueille et
traite les données. Les scripts Arduino et Python sont fournis. Seul le script Python devra être
modifié selon vos besoins.

Matériel et accessoires
Pour réaliser les tests, on dispose de différents types de fil (matière et largeur), ainsi que d’outils qui

permettront de préparer et fixer les échantillons (image ci-contre).
On portera une attention particulière sur la façon de fixer le fil :
celui-ci doit être coincé suffisamment fermement pour ne pas glisser
au cours de la traction (ce qui fausserait la mesure de son allonge-
ment), mais doit être le moins possible écrasé par le serrage (ce qui
fausserait la courbe de traction en facilitant la rupture). Pour cela
on peut utiliser des joints de plomberie en fibre au contact direct
du fil, et enrouler le fil autour de la tige (sur sa partie lisse) sur un
demi-tour. Le fil est serré par un écrou et une paire de rondelles
en acier. On peut aussi utiliser des plaquettes de serrage rectangu-
laires en aluminium suffisamment allongée pour étendre la zone de
serrage.

III. Manipulations

• MANIP 1 : Étalonnage du potentiomètre

• Allumer l’alimentation stabilisée continue du moteur et la régler en générateur de tension. Fixer une
tension relativement basse mais suffisante pour que le moteur se déplace lorsqu’on actionne les boutons
AV-AR a.

• À l’aide du réglet et du voltmètre (connections GND et CURSEUR), étalonner le potentiomètre pour
établir la relation position-tension.

a. La plaquette de commande CYTRON fonctionne normalement pour des tensions entre 5V et 30V. En pratique 4V
convient.

• MANIP 2 : Étalonnage de la jauge de contrainte
À l’aide du dynamomètre 50N, et du voltmètre, étalonner la jauge pour établir la relation force-tension.

On procède maintenant en deux temps, pour séparer les difficultés :
— un premier essai sur la console d’acquisition FOXY pour vérifier que tout fonctionne bien, et avoir

un premier jeu de données exploitable ;
— d’autres essais suivis d’une exploitation complète avec le système d’acquisition ARDUINO-PYTHON.

5. Le signal en entrée de la carte ARDUINO doit être suffisamment grand mais ne doit pas dépasser 5V.

4

PCSI 1 - Stanislas - TP Mécanique N◦1 - Tests de traction et loi de Hooke A. MARTIN

• MANIP 3 : Premier test de traction avec la console Foxy

• Brancher les sorties des 2 capteurs sur 2 voies de la Foxy ;
• Fixer un échantillon de fil, si possible non tordu ;
• Mesurer sa longueur initiale et son diamètre ;
• Effectuer une acquisition jusqu’à rupture ;
• Sauvegarder le tableau des valeurs au format .csv a pour une exploitation ultérieure sous Python.

a. Depuis Atelier Scientifique, il faut d’abord copier-coller les valeurs dans Excel ou LibreOffice puis exporter en .csv

• MANIP 4 : Tests de traction avec ARDUINO-PYTHON
• Connecter les sorties des deux capteurs aux entrées A0 et A1 de la carte ARDUINO. Téléverser le

programme depuis l’application ARDUINO, après avoir vérifié que le port série a été correctement
défini (cf annexe).

• À l’aide du script de pilotage Python traction_acquisition.py, réaliser d’autres tests de traction
pour différents types de fils. Le script sauvegarde automatiquement les données à chaque expérience a

a. Changer de nom à chaque fois pour ne pas écraser vos précédentes données.

Q1. Les entrées analogiques de la carte ARDUINO étant conçues pour recevoir des tensions sur l’inter-
valle [0 V, 5 V] et les convertir sur 1024 niveaux (10 bits), quelle relation doit-on appliquer sur ce
signal numérique enregistré pour reconstruire la valeur de tension du capteur ?

• MANIP 5 : Traitement des données avec PYTHON
Traiter les séries de données précédemment enregistrées avec le script de traitement Python
traction_traitement.py que vous aurez préalablement complété en implémentant les deux étalonnages
précédents dans le script.

• Tracer la courbe de traction conventionnelle σ = f(ε). Le matériau est-il ductile ou fragile ?
• Déterminer les grandeurs caractéristiques E et Rm, et si le matériau est ductile, Re et Ag.

On prendra soin de relever la vitesse de déplacement du bras de l’actionneur et la tension d’alimentation
associée. Si le temps le permet on testera l’effet de ce paramètre. Dans un premier temps il est préférable de
procéder avec une vitesse aussi petite que possible.
On n’oubliera pas d’évaluer les incertitudes.

5

PCSI 1 - Stanislas - TP Mécanique N◦1 - Tests de traction et loi de Hooke A. MARTIN

IV. ANNEXE : Acquisition des données avec ARDUINO-PYTHON

IV.1. Carte Arduino
Arduino est la marque d’une plateforme de prototypage open-source qui permet aux utilisateurs

de créer des objets électroniques interactifs à partir de cartes électroniques matériellement libres sur
lesquelles se trouve un microcontrôleur 6. Le microcontrôleur peut être programmé pour analyser et
produire des signaux électriques, de manière à effectuer des tâches très diverses. Le langage utilisé est
le C++ avec des bibliothèques associées. Un logiciel d’environnement de programmation open-source est
fourni pour cela (Arduino IDE). La carte Arduino peut être utilisée pour construire des objets interactifs
indépendants (prototypage rapide), ou bien peut être connecté à un ordinateur pour communiquer avec
ses logiciels. Les différentes versions des Arduino fonctionnent sous le même principe général, décrit
succinctement ci-dessous.

Figure 3 – Carte Arduino UNO (Par Sad-
Cloud – Travail personnel, CC BY-SA 4.0, https ://com-
mons.wikimedia.org/w/index.php ?curid=37290368).

• A : 14 broches dites numériques c’est-à-dire
à fonctionnement binaire (1 ou 0, HIGH ou
LOW en anglais) ; elles offrent en sortie du
5V et acceptent en entrée du 5V sur le
même principe. Fonctions digitalWrite()
et digitalRead(), et pour les ports PWM a

analogWrite().
• B : 6 broches dites analogiques (A0-A5), re-
çoivent des tensions entre 0V et 5V, conver-
ties en entiers naturels par le CAN sur 10
bits, pour des fréquences de 10kHz maximum.
Fonction analogRead().

• C : les différentes broches d’alimentation en
sortie (où la carte sert de générateur de ten-
sion pour un élément externe) : 5V, 3,3V, la
masse (GND), et Vin reliée à l’alimentation
de la carte (7 V-12 V).

a. Pulse Width Modulation, ou Modulation de Largeur
d’Impulsions, technique couramment utilisée pour synthéti-
ser des signaux pseudo analogiques à l’aide de circuits à fonc-
tionnement binaire.

Lorsqu’elle est reliée à l’ordinateur par le port USB, la carte est alimentée par ce biais en 5V.

Toute erreur de polarité (signe de la tension appliquée) ou dépassement de la valeur
nominale (5V) peut conduire à la destruction de la carte ! On prendra donc soin de
s’assurer que les signaux appliqués sont bien dans l’intervalle attendu.

IV.2. Environnement de programmation Arduino
L’interface de programmation du microcontrôleur s’ouvre (Fig. 4) lorsque l’on clique sur un fichier

de type programme.ino (ci-après appelé sketch), après avoir branché la carte à l’ordinateur via le port
USB 7. On commence par vérifier le choix du type de carte Arduino (ici UNO en ce qui nous concerne)
dans le menu
Outils -> Type de carte
ainsi que le port proposé pour la connection :
Outils -> Port série

6. Un microcontrôleur est un circuit intégré qui rassemble les éléments essentiels d’un ordinateur : processeur, mémoires
(mémoire morte et mémoire vive), unités périphériques et interfaces d’entrées-sorties. Il constitue une alternative plus acces-
sible par rapport aux microprocesseurs polyvalents utilisés dans les ordinateurs personnels, avec de nombreuses applications
notamment dans la domotique, la robotique et plus généralement les systèmes embarqués.

7. Au branchement, la diode ON située à côté du nom UNO doit s’allumer.

6

PCSI 1 - Stanislas - TP Mécanique N◦1 - Tests de traction et loi de Hooke A. MARTIN

Figure 4 – Interface Arduino IDE et structure type
d’un programme.

: Bouton pour compiler et téléverser le sketch
dans le microcontrôleur.

Pour tester le bon fonctionnement de la carte on
peut ouvrir puis téléverser le sketch Blink, que l’on
trouvera ici :
Fichiers -> Exemples -> 01.Basics -> Blink
et qui a pour effet de faire clignoter la LED L.

La structure générale d’un sketch Arduino est illus-
trée ci-contre. Après la définition éventuelle de
quelques constantes,

• une première procédure d’initialisation
setup() est exécutée une seule fois ;

• une seconde procédure loop() est exécutée en
boucle indéfiniment, c’est-à-dire jusqu’à l’ar-
rêt de la carte, ou le téléversement d’un nou-
veau sketch.

IV.3. Programmes d’acquisition ARDUINO-PYTHON

Étant donné que le langage enseigné en CPGE est Python et non C++, nous optons pour une
utilisation limitée de ce dernier. La carte Arduino sera utilisée en tant que simple carte d’acquisition,
et tout le traitement des données sera dévolu à Python. Pour cela on utilise la carte en mode Maître-
Esclave à l’aide de la bibliothèque pySerial. Le code Python est séparé en deux scripts disjoints, l’un
pour l’acquisition et la sauvegarde des données brutes, l’autre pour le post-traitement.

a. Installation du code C++ dans le microcontrôleur (sketch)

On commencera donc par téléverser, à l’aide de l’interface Arduino IDE, le programme du microcontrôleur
ci-dessous (lecture_capteurs.ino, à ne pas modifier 8), qui demande à la carte de lire et transférer
périodiquement les valeurs de tension issues des deux capteurs sur deux entrées analogiques.
frameframe frame1 /∗
frameframe frame2 Lecture AnalogPin A0 et A1 , pour t ra i t ement par Python
frameframe frame3 ∗/
frameframe frame4

frameframe frame5 // Constantes et variables
frameframe frame6 const i n t analogPinA0 = 0 ; // Choix de la voie d’acquisition (à adapter)
frameframe frame7 const i n t analogPinA1 = 1 ; // Choix de la voie d’acquisition (à adapter)
frameframe frame8 i n t capteur_Pos i t ion = 0 ; // variable de stockage entière
frameframe frame9 i n t capteur_Force = 0 ; // variable de stockage entière
frameframe frame10

frameframe frame11 // Variables à déclarer – protocole d’initialisation
frameframe frame12 void setup () {
frameframe frame13 pinMode (analogPinA0 ,INPUT) ; // Définition de la voix d’entrée
frameframe frame14 pinMode (analogPinA1 ,INPUT) ; // Définition de la voix d’entrée
frameframe frame15 // Ouverture d’une connection série pour transmettre les valeurs avec choix du taux de transfert (baud rate) :
frameframe frame16 // Supported baud rates 300, 600, 1200, 2400, 4800, 9600, 14400, 19200, 28800, 31250, ...
frameframe frame17 S e r i a l . begin (19200) ; // Attend la connexion du port
frameframe frame18 whi le (! S e r i a l) ; // Attend la connexion du port
frameframe frame19 }
frameframe frame20

8. sauf éventuellement pour modifier le débit d’échange avec l’ordinateur (baud rate, à ajuster aussi dans le script
Python) si l’échantillonnage est mauvais.

7

PCSI 1 - Stanislas - TP Mécanique N◦1 - Tests de traction et loi de Hooke A. MARTIN

frameframe frame21 // Boucle principale – flux continu
frameframe frame22 void loop () {
frameframe frame23 // read the values on AnalogPin A0 and A1 and store in a variables
frameframe frame24 capteur_Pos i t ion = analogRead (analogPinA0) ;
frameframe frame25 capteur_Force = analogRead (analogPinA1) ;
frameframe frame26 // send the date in millisecond out the serial port
frameframe frame27 S e r i a l . p r i n t (m i l l i s ()) ; // envoi de la date en ms
frameframe frame28 S e r i a l . p r i n t (" \ t ") ; // Ajout d’une tabulation
frameframe frame29 // send the 10-bit sensor values out the serial port
frameframe frame30 S e r i a l . p r i n t (capteur_Pos i t ion) ;
frameframe frame31 S e r i a l . p r i n t (" \ t ") ; // Ajout d’une tabulation
frameframe frame32 S e r i a l . p r i n t l n (capteur_Force) ;
frameframe frame33 // Une éventuelle temporisation si le débit est trop rapide (peu probable)
frameframe frame34 delay (1) ; // attendre 1 ms
frameframe frame35 }

On peut remarquer que les données sont envoyées sous la forme d’un triplet d’entiers naturels (entre 0
et 1023)
date position force
séparés par des tabulations et suivis d’un retour à la ligne (println, ou EOL pour End Of Line en abrégé
informatique), avec une périodicité de l’ordre d’une milliseconde (temporisation delay(1);), à condition
que les opérations de lecture et d’écriture soient beaucoup plus rapides que cela... à vérifier donc.

b. Programme Python de pilotage de l’acquisition

Puis on exécute le code Python ci-dessous (script traction_acquisition.py à compléter) pour acquérir
puis sauvegarder les données mesurées brutes (numériques). Pour ce faire on ouvrira un environnement
de programmation au choix, par exemple en passant par la suite Anaconda (utiliser le logiciel Spyder, ou
iPython ou Jupyter si vous savez vous en servir, après avoir sélectionné l’environnement envCPGE pour
avoir accès à la bibliothèque pySerial). A priori ce script ne nécessite pas d’être modifié, si ce n’est pour
adapter éventuellement le nombre de points d’acquisition, ou le débit d’échange avec la carte ARDUINO
(baud rate).

1 import numpy as np #module de calcul numérique
2 import os #module de dialogue avec le système d’exploitation
3 import matplotlib . pyplot as plt #module graphique
4 import serial # gestion du port série
5 import time #module de gestion du temps
6

7 #Définition du nom de l’expérience pour les sauvegardes : 1 mot, pas de caratères spéciaux
8 name_exp = input (" E n t r e r ␣ l e ␣nom␣ de ␣ l ’ e x p e r i e n c e ␣ (ex : ␣ n y l o n _25kg) : ␣ ")
9 namefig = name_exp + ’ _brut . png ’

10 namefile = name_exp + ’ _bru t . t x t ’
11 # Paramètres initiaux de l’échantillon avant étirement (1ère évaluation)
12 l0 = float (input (" E n t r e r ␣ l a ␣ l o n g u e u r ␣ i n i t i a l e ␣ de ␣ l ’ e c h a n t i l l o n ␣ (mm) ␣ : ␣ "))
13 d0 = float (input (" E n t r e r ␣ l e ␣ d i ame t r e ␣ i n i t i a l ␣ de ␣ l ’ e c h a n t i l l o n ␣ (mm) ␣ : ␣ "))
14

15 # Connexion de l’ordinateur au port série, même débit que dans le code Arduino
16 # Supported baud rates 300, 600, 1200, 2400, 4800, 9600, 14400, 19200, 28800, 31250, 384
17 serial_port = serial . Serial (port = ’COM9 ’ , baudrate =19200) #Ouverture du port
18 # port sous LINUX : ’/dev/ttyACM0’ (ou /dev/ttyACM1, ou /dev/ttyUSB0...)
19 # port sous WINDOWS : ’COM9’ (ou ’COM0, 1, 2, 3,... choisir a priori le plus élevé)
20

21 serial_port . setDTR (False) # Initialisation de la carte Arduino
22 time. sleep (1) # temps de stabilisation - temporisation
23 serial_port . setDTR (True) # Activation de la carte
24 serial_port . reset_input_buffer () # Vide le tampon de stockage existant
25

26 # Réception des mesures
27 N=2000 # nombre d’acquisitions
28 instants = np.zeros(N) # Tableau des instants, type float64 par défaut.

8

PCSI 1 - Stanislas - TP Mécanique N◦1 - Tests de traction et loi de Hooke A. MARTIN

29 positions = np.zeros(N) # Tableau d’acquisition des valeurs de position
30 forces = np.zeros(N) # Tableau d’acquisition des valeurs de force
31 try:
32 for i in range(N) :
33 mesures = serial_port . readline (). split () # lit une ligne avec EOL + séparation
34 instants [i] = int(mesures [0])
35 positions [i] = int(mesures [1])
36 forces [i] = int(mesures [2])
37 except :
38 print (" d e f a u t ␣ de ␣ f o n c t i o n n emen t ")
39 pass
40

41 # Fermeture du port série
42 serial_port .close ()
43

44 # Sauvegarde des valeurs dans un fichier texte
45 file=open(namefile , ’w ’) #Ouverture en lecture et écriture (’w’ : write)
46 # 1ères lignes : écriture d’un en-tête
47 file.write(" E x p e r i e n c e : ␣\ t "+ name_exp + " \n ")
48 file.write(" Longueu r ␣ i n i t i a l e ␣ e c h a n t i l l o n ␣ (mm) : ␣\ t "+ str(l0) + " \n ")
49 file.write(" D i ame t r e ␣ i n i t i a l ␣ e c h a n t i l l o n ␣ (mm) : ␣\ t "+ str(d0) + " \n ")
50 file.write(" I n s t a n t ␣\ t ␣ P o s i t i o n ␣\ t ␣ Fo r c e ␣\n ")
51 # lignes suivantes : valeurs numériques séparées par des tabulations et EOL en fin
52 for i in range(N):
53 file.write(str(instants [i])+ ’ \ t ’ +str(positions [i])+ ’ \ t ’ +str(forces [i])+ ’ \n ’)
54 file.close ()
55

56 # Graphe de contrôle
57 plt.plot(positions ,forces , ’−b ’)
58 plt. xlabel (" P o s i t i o n s ␣ (nume r i que ␣ 10 ␣ b i t s) ")
59 plt. ylabel (" F o r c e s ␣ (nume r i que ␣ 10 ␣ b i t s) ")
60 plt.title(" T r a c t i o n ␣ s u r ␣un␣ f i l ␣ de ␣ "+ name_exp + ’ ␣−␣ S i gnaux ␣ b r u t s ’)
61 plt.grid ()
62 plt. savefig (namefig)
63 plt.show ()
64

65 # Pour gérer le répertoire courant depuis Python (emplacement sauvegardes) :
66 # obtenir le nom du répertoire courant : os.getcwd()
67 # changer le répertoire courant : os.chdir(’chemin_de_mon_repertoire’)

On notera l’importance de la bonne dénomination du port affecté à la communication avec la carte
Arduino, qui dépend du système d’exploitation et du poste utilisé. Elle doit correspondre au choix
effectué dans l’interface Arduino IDE, menu :
Outils -> Port série
En cas de doute sur le port utilisé sous LINUX ou MAC, taper l’instruction suivante dans un terminal
avant puis après avoir branché la carte :
python -m serial.tools.list_ports

On note aussi qu’au cours de la sauvegarde, on a pris soin d’inclure dans l’entête les informations
nécessaires au traitement et à l’exploitation ultérieurs de ces données brutes. De manière générale il est
toujours prudent de sauvegarder les données brutes avant traitement pour parer à une éventuelle erreur
d’étalonnage ou de calcul. C’est pourquoi le code de traitement a été placé dans un second script.

c. Programme Python de traitement

Le traitement des données brutes est fait à l’aide du script traction_traitement.py ci-dessous, à
compléter.

1 import numpy as np #module de calcul numérique
2 import os #module de dialogue avec le système d’exploitation

9

PCSI 1 - Stanislas - TP Mécanique N◦1 - Tests de traction et loi de Hooke A. MARTIN

3 import matplotlib . pyplot as plt #module graphique
4

5 #Définition du nom de l’expérience pour les sauvegardes
6 name_exp = input (" E n t r e r ␣ l e ␣nom␣ de ␣ l ’ e x p e r i e n c e ␣ : ␣ ")
7 namefile = name_exp + ’ _bru t . t x t ’
8 namefig = name_exp + ’ . png ’
9

10 # Lecture des données brutes stockées dans le fichier texte "namefile"
11 donnees_brutes = np. loadtxt (namefile , delimiter = ’ \ t ’ ,skiprows =4)
12 # Rmq : ici on n’importe pas les 4 1ères lignes (entête)
13 nb_mes = np.shape(donnees_brutes)[0] # nombre de mesures
14 # Extraction des colonnes
15 instants = donnees_brutes [: ,0]
16 positions = donnees_brutes [: ,1]
17 forces = donnees_brutes [: ,2]
18

19 # Conversion des valeurs mesurées
20 ### PARTIE À MODIFIER ###
21 deformations = positions
22 contraintes = forces
23 ### FIN PARTIE À MODIFIER ###
24

25 # Graphe
26 plt.plot(deformations , contraintes , ’−b ’)
27 plt. xlabel (" De f o rma t i o n ␣ (%) ")
28 plt. ylabel (" C o n t r a i n t e ␣ (MPa) ")
29 plt.title(" T r a c t i o n ␣ s u r ␣un␣ f i l ␣ de ␣ "+ name_exp)
30 plt.grid ()
31 plt. savefig (namefig)
32 plt.show ()

La partie à compléter concerne la traduction des valeurs brutes (entiers entre 0 et 1023) en terme de
position ou déplacement puis de déformation d’une part, et de force puis contrainte d’autre part. Son
écriture est spécifique à chaque poste expérimental puisque cela repose sur les étalonnages des capteurs 9.

9. Chaque dispositif expérimental diffère des autres par les valeurs exactes des tensions d’alimentation des capteurs et
les valeurs réelles des composants qui les constituent.

10

